• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 51
  • 23
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 326
  • 326
  • 326
  • 63
  • 56
  • 56
  • 54
  • 50
  • 42
  • 39
  • 37
  • 35
  • 35
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines

Shivapuji, Anand M January 2015 (has links) (PDF)
The current work, through experimental and numerical investigations, analyses the process and cycle level deviations in engine response on fuelling multi-cylinder natural gas engines with producer gas. Producer gas is a low calorific value bio-derived alternative with composition of 19 ± 1% CO and H2, 2 ± 0.5 % CH4, 12 ± 1% CO2 and 46 ± 1% N2 and has thermo-physical properties significantly different from natural gas. Experimental investigations primarily address the energy balance (full cycle analysis) and in-cylinder response (process specific analysis) at various operating conditions covering naturally aspirated and turbocharged mode of operation with natural gas and producer gas. Numerical investigations are based on two thermodynamic scope mathematical models, a zero dimensional model (Wiebe function) and a quasi-dimensional model (propagating flame front heat release). A detailed diagnostic analysis on a six cylinder (E6) indicates, turbocharger mismatch, the first explicit impact of fuel thermo-physical property variation. Turbocharger matching and optimization resulted in a peak load of 72.8 kWe (BMEP 9.47) at a maximum brake torque ignition angles of 22 deg before TDC and compressor pressure ratio of 2.25. Engine energy distribution analysis indicates skewed energy balance with higher cooling load (in excess of 30%) as compared to fossil fuel operation. This is attributed to the presence of nearly 20% H2 which enhances the convective cooling through the higher thermal conductivity. Parametric variation of H2 fraction on a two cylinder engine (E2) with four different syngas compositions (mixture H2 varying from 7.1% to 14.2%) depicts enhanced cooling load from 33.5% to 37.7%. Process level comparison indicates significant deviations in the heat release profile compared to fossil fuels. It has been observed that with an increase in mixture hydrogen fraction (from 7.1% to 14.2%), the fast burn phase combustion duration reduces from 59.6% to 42.6% but the terminal stage duration increases from 25.5% to 48.9%. The enhanced cooling of the mixture (due to the presence of hydrogen), particularly in the vicinity of walls is argued to contribute towards the sluggish terminal phase combustion. Immediate implication of thermo-kinematic response variation is on the magnitude and sensitivity of combustion descriptors and the need for dependent control system calibration for producer gas fuelled operation is established. Descriptor analysis is extended to knocking pressure traces and a new simple methodology is proposed towards identifying the occurrence and regime of knock. Analysing the implications through numerical investigation, the influence of the altered thermo-kinematic response for producer gas fuelled operation impacts 0D simulations. Zero dimensional simulations fail with conventional coefficients requiring fuel specific coefficients. Based on fuel specific coefficients, the suitability of 0D model for the simulation of varying operating conditions ranging from naturally aspirated to turbo charged engines, compression ratios and different engine geometries is established. The analysis is extended to quasi-dimensional through the eddy entrainment and laminar burn up model. The choice of laminar flame speed and turbulent parameters is validated based on the assessment of the flame speed ratio (4.5 ± 0.5 for naturally aspirated operation, turbulent Reynolds number of 2500 ± 250 and 9.0 ± 1.0 for turbocharged operation, turbulent Reynolds number of 5250 ± 250). In the estimation of laminar flame speed, the limitation of GRIMech 3.0 mechanism for H2-CO-CH4 systems is explicitly established and GRIMech 2.11 is used to arrive at experimentally comparable results. In-cylinder engine simulation results covering parametric variation of load, ignition angle and mixture quality, for engine natural gas fuelled naturally aspirated operation and producer gas fuelled naturally aspirated and turbocharged after cooled are compared with experimental results. The quasi dimensional analysis is extended to simulate end gas auto-ignition and is validated by using experimental manifold conditions for turbocharged operation for which knock has been observed. Extending the model to a Waukesha cooperative fuels research engine, motor methane number of 110 is reported for standard composition producer gas. The use of quasi dimensional models with end gas reaction kinetics enabled for knock rating of fuels represents first of its kind initiative.
302

Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor

Chinnathambi, Prasanna 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A constant-volume combustor is used to investigate the ignition initiated by a traversing jet of reactive hot gas, in support of combustion engine applications that include novel wave-rotor constant-volume combustion gas turbines and pre-chamber IC engines. The hot-jet ignition constant-volume combustor rig at the Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) was used for this study. Lean premixed combustible mixture in a rectangular cuboid constant-volume combustor is ignited by a hot-jet traversing at different fixed speeds. The hot jet is issued via a converging nozzle from a cylindrical pre-chamber where partially combusted products of combustion are produced by spark- igniting a rich ethylene-air mixture. The main constant-volume combustor (CVC) chamber uses methane-air, hydrogen-methane-air and ethylene-air mixtures in the lean equivalence ratio range of 0.8 to 0.4. Ignition delay times and ignitability of these combustible mixtures as affected by jet traverse speed, equivalence ratio, and fuel type are investigated in this study.
303

Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine

Fitzpatrick, John Nathan 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the DCC cavity with a more physically representative inlet condition while coupling the solid thermal analysis and compressible air flow analysis that includes the fluid velocity, pressure, and temperature fields; (b) run a coupled analysis whose boundary conditions come from computational models, rather than thermocouple data; (c) validate the model using available experimental data; and (d) based on the validation, determine if the model can be used to predict air inlet and metal temperatures for new engine geometries. Verification with experimental results showed that the coupled analysis with the 3D no-bolt CFD model with predictive boundary conditions, over-predicted the HP6 offtake temperature by 16k. The maximum error was an over-prediction of 50k while the average error was 17k. The predictive model with 3D bolts also predicted cavity temperatures with an average error of 17k. For the two CFD models with predicted boundary conditions, the case without bolts performed better than the case with bolts. This is due to the flow errors caused by placing stationary bolts in a rotating reference frame. Therefore it is recommended that this type of analysis only be attempted for drive cone cavities with no bolts or shielded bolts.
304

Study of convective heat transfer phenomena for turbulent pulsating flows in pipes / Etude du transfert thermique convectif dès écoulements turbulents pulsés dans un conduit cylindrique

Simonetti, Marco 15 December 2017 (has links)
Dans le but de réduire la consommation en carburant et les émissions de CO2 des moteurs à combustion interne, un des leviers, qui a intéressé diffèrent acteurs dans le secteur automobile, est la récupération de l’énergie thermique disponible dans les gaz d’échappement. Malgré différents technologie ont été investigués dans le passé; les transferts de chaleur qui apparient dans les gaz d’échappement n’ont pas encore étés suffisamment étudiés. Le fait que les échanges de la chaleur apparent dans des conditions pulsatives, notamment due aux conditions de fonctionnement moteur, rende les connaissances acquis jusqu’à présent limités et ne pas exploitables. A l’état actuel on n’est pas capable de pouvoir prédire le transfert thermique convectif des écoulements pulsé. Les travaux de cette thèse s’instaurent dans la continuité de ce besoin, l’objectif principal est donc l’étude expérimentale du transfert thermique convectif des écoulements turbulent pulsés dans un conduit cylindrique. La première partie de ce travail a été consacrée à le dimensionnement d’un moyen d’essais permettant la création d’un écoulement pulsé type moteur; en suite différents méthodes de mesures ont étés développes afin de connaitre les variations instantanés de vitesse et température de l’écoulement. Plusieurs essais ont été reproduits afin de caractériser l’impact de la pulsation sur le transfert de la chaleur. Les résultats expérimentaux ont été analysés avec deux approches différentes: dans un premier temps une approche analytique 1D a permis de mettre en évidence le mécanisme principal responsable de l’amélioration du transfert thermique convectif,ainsi, il a fourni des éléments supplémentaires pour le futur développement de modèles mathématiques plus adaptés à la prédiction des transferts d’énergie. En suite une approche 2D, supporté d’une phase de modélisation numérique, a permis de caractériser le mécanisme de transport radial d’énergie thermique. / Waste Energy Recovery represents a promising way to go further in fuel saving and greenhouse emissions control for Internal Combustion Engine applications. Although several technologies have been investigated in the past few years, the convective heat transfers, playing an important role in the energy exchanges at the engine exhaust, has not receive enough attention. Heat transfers, in such applications, occur in pulsating conditions because of the engine operating conditions, making thus the actual knowledge of the heat transfer phenomena limited and not exploitable. Nowadays there is not any model capable to predict convective heat transfers for pulsating flows. In this context, the present thesis addresses the purpose to study the convective heat transfer phenomena, by an experimental approach, occurring for turbulent pulsating flows in pipes. In the first part of this work, an experimental apparatus has been designed to reproduce an exhaust type pulsating flow in fully managed conditions, as well as, several measurement techniques have been developed to know the instantaneous profiles of air temperature and velocity. Many experiments have been performed in order to characterize the impact of the flow pulsation on the convective heat transfers. In the second part of this work, the experimental results have been analyzed with two different approaches: firstly, with a 1D assumption the time-average convective heat transfers has been computed, and the major mechanism responsible of the heat transfer enhancement has been pointed out. Furthermore, it has been possible to highlight the mathematical term representative of such mechanism, which should be accounted in future to define a more adapted numerical model for the heat transfer prediction. In a second phase with a 2D assumption, and, with an energy and a fluid-mechanic computational phase, the radial transport of thermal energy has been characterized for a pulsating flow.
305

Desenvolvimento do motor de ignição por compressão alimentado por injeção direta de óleo diesel e por etanol pós-vaporizado no coletor de admissão / Progress in the compression ignition engined fueled by diesel direct injection and by post-vaporized ethanol in the intake manifold

Marcelo Valente Feitosa 08 December 2003 (has links)
Desenvolveu-se um sistema de alimentação misto para motores de ignição por compressão turboalimentados, o qual utiliza diesel injetado normalmente na câmara de combustão e etanol pós-vaporizado, injetado líquido no coletor de admissão e vaporizado pela grande disponibilidade de energia contida no ar comprimido. Foram possíveis substituições de até 55% da massa de diesel por etanol; funcionamento regular e repetitivo foi verificado, resultado da admissão de álcool na forma de vapor. Constatou-se que o rendimento térmico e as emissões de gases poluentes eram bastante influenciados pelo sistema de alimentação desenvolvido: ganhos de até 25,6% no rendimento térmico foram possíveis com reduções máximas de 81% na emissão de material particulado e 80% em NOx, pela queima mais eficiente do diesel na presença do vapor de etanol. Reduções notáveis na temperatura do ar comprimido foram atingidas, possibilitando a substituição dos \"intercoolers\". A análise teórica da implantação do sistema desenvolvido, numa frota de veículos de transporte coletivo da região metropolitana de São Paulo, indicou viabilidade econômica e ambiental. / It was developed a supplementary fueling system for turbocharged compression ignition, which uses diesel injected usually in the combustion chamber and post-vaporized ethanol, that is injected in the liquid state inside the intake manifold and vaporized by the energy in the compressed air. It was possible to replace up to 55% of the diesel mass by ethanol; regular and repetitive operation was verified, result of the alcohol induction in the vapor state. It was verified that engine\'s efficiency and pollutant gases emissions were quite influenced by the fueling system developed: improvements of up to 25,6% in the efficiency were possible, with maximum reductions of 81% in particulate matter and 80% in NOx, as a result of a more efficient diesel oxidation in presence of ethanol vapor. Notable reductions in the compressed air temperature were reached, making possible the substitution of the \"intercoolers\". The theoretical analysis to implantation of the developed system, on vehicles of public transportation in the metropolitan area of São Paulo, indicated economical and environmental viability.
306

Desenvolvimento do motor de ignição por compressão alimentado por injeção direta de óleo diesel e por etanol pós-vaporizado no coletor de admissão / Progress in the compression ignition engined fueled by diesel direct injection and by post-vaporized ethanol in the intake manifold

Feitosa, Marcelo Valente 08 December 2003 (has links)
Desenvolveu-se um sistema de alimentação misto para motores de ignição por compressão turboalimentados, o qual utiliza diesel injetado normalmente na câmara de combustão e etanol pós-vaporizado, injetado líquido no coletor de admissão e vaporizado pela grande disponibilidade de energia contida no ar comprimido. Foram possíveis substituições de até 55% da massa de diesel por etanol; funcionamento regular e repetitivo foi verificado, resultado da admissão de álcool na forma de vapor. Constatou-se que o rendimento térmico e as emissões de gases poluentes eram bastante influenciados pelo sistema de alimentação desenvolvido: ganhos de até 25,6% no rendimento térmico foram possíveis com reduções máximas de 81% na emissão de material particulado e 80% em NOx, pela queima mais eficiente do diesel na presença do vapor de etanol. Reduções notáveis na temperatura do ar comprimido foram atingidas, possibilitando a substituição dos \"intercoolers\". A análise teórica da implantação do sistema desenvolvido, numa frota de veículos de transporte coletivo da região metropolitana de São Paulo, indicou viabilidade econômica e ambiental. / It was developed a supplementary fueling system for turbocharged compression ignition, which uses diesel injected usually in the combustion chamber and post-vaporized ethanol, that is injected in the liquid state inside the intake manifold and vaporized by the energy in the compressed air. It was possible to replace up to 55% of the diesel mass by ethanol; regular and repetitive operation was verified, result of the alcohol induction in the vapor state. It was verified that engine\'s efficiency and pollutant gases emissions were quite influenced by the fueling system developed: improvements of up to 25,6% in the efficiency were possible, with maximum reductions of 81% in particulate matter and 80% in NOx, as a result of a more efficient diesel oxidation in presence of ethanol vapor. Notable reductions in the compressed air temperature were reached, making possible the substitution of the \"intercoolers\". The theoretical analysis to implantation of the developed system, on vehicles of public transportation in the metropolitan area of São Paulo, indicated economical and environmental viability.
307

Improving the performances of the combustion engines by improving the ignition system / Amélioration des performances des moteurs à combustion par amélioration du système d'allumage

Astanei, Dragoş-George 05 November 2014 (has links)
Face aux normes actuelles et futures, de plus en plus drastiques, concernant les émissions de polluants, les constructeurs automobiles cherchent en permanence à améliorer l'efficacité des moteurs à allumage commandé. Une des solutions les plus efficaces et applicables pour diminuer la quantité de polluants émis dans les gaz d’échappement (HC, CO, NOx) et réduire la consommation de carburant, est d’utiliser un mélange très pauvre (richesse du mélange inférieure à 0,6). Toutefois, ce concept de fonctionnement est limité par les systèmes d'allumage classiques qui ne peuvent pas garantir un allumage du mélange air / combustible dans de bonnes conditions, de manière à assurer une combustion complète, rapide et reproductible.Le sujet de cette thèse consiste en l'élaboration d'un nouveau système d'allumage basé sur une bougie d’allumage double, qui peut produire deux d'étincelles quasi-simultanées, dont la longueur cumulée est plusieurs fois plus élevée que celle d’étincelles produites par une bougie d'allumage classique. Pour valider ce système d'allumage, trois différents types d'analyses ont été réalisés: une analyse des paramètres électriques des décharges, un diagnostic du plasma par spectroscopie optique d'émission, et des essais in situ du système d'allumage sur deux moteurs à combustion interne avec analyse des gaz d'échappement et détermination des performances des moteurs.Ces tests ont révélé que l'utilisation du système d’allumage à double étincelle peut assurer une meilleure stabilité dans le fonctionnement du moteur (en particulier dans les conditions d'allumage difficiles, en utilisant des mélanges très pauvres) ; des performances accrues du moteur pour une même quantité de carburant consommé ; et une diminution de la quantité d’hydrocarbures imbrûlés et de monoxyde de carbone dans les gaz d'échappement, mais avec une plus grande émission d'oxydes d'azote par rapport à un système d'allumage classique. / Faced with the current and future more and more drastic standards for pollutant emissions, the car manufacturers are permanently trying to improve the efficiency of spark ignition engines. One of the most effective applicable solutions for reducing the quantity of pollutant emissions (HC, CO, NOx) from the exhaust gases and also to reduce the fuel consumption is to operate with very lean mixture (equivalent ratio lower than 0.6). However, this operation concept is limited by the actual ignition systems that cannot assure an air/fuel mixture ignition in good conditions, in order to assure a complete, fast and repeatable combustion. The subject of this thesis consists into developing of a new ignition system based on a double spark plug, which can produce two quasi-simultaneous spark discharges with cumulated length few times higher than the sparks produced by a conventional spark plug. For ignition system validation, three different types of analysis have been considered: the analysis of the discharges electrical parameters, the plasma diagnosis using optical emission spectroscopy methods and the tests of the ignition system on two internal combustion engines with the exhaust gases analysis and engine performances determination. The tests revealed that the utilization of the double spark ignition system can assure a better stability in engine operation (especially in difficult ignition conditions such using very lean mixtures), increased engine performances for the same amount of consumed fuel and it can provide a diminution of the unburned hydrocarbons and carbon monoxide quantities from the exhaust gases, but with an increased quantity of nitrogen oxides, compared with a conventional ignition system.
308

Análise de virabrequins automotivos utilizando modelos analíticos e flexíveis / Automotive crankshafts analysis using analytical and flexible models

Villalva, Sergio Gradella, 1985- 24 August 2018 (has links)
Orientador: Marco Lúcio Bittencourt / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-24T08:50:44Z (GMT). No. of bitstreams: 1 Villalva_SergioGradella_M.pdf: 11688581 bytes, checksum: df8c433816377fee9fe37ecd07dfb3a1 (MD5) Previous issue date: 2014 / Resumo: O virabrequim é um dos componentes mais importantes de um motor de combustão interna. É responsável, juntamente com as bielas, por transformar o movimento de translação dos pistões em movimento rotativo, capaz de transmitir torque. Durante o funcionamento do motor, o virabrequim é submetido a cargas axiais, torcionais e de flexão, as quais resultam em regiões com níveis elevados de tensões ao longo da peça. Além disso, o virabrequim apresenta altos níveis de carga de torção devido às vibrações torcionais, que é uma das maiores causas de falhas de vibrabrequins e de outros acessórios do motor, como polias, correias, trens de engrenagem etc. Este trabalho consiste no estudo e desenvolvimento de um programa computacional, denomidado CrankLab, para cálculo analítico de tensões e coeficientes de segurança de fadiga em virabrequins, que possa ser utilizado como uma ferramenta simples para a fase inicial de concepção do virabrequim. O estudo abrange o cálculo dos esforços dinâmicos, provenientes da combustão nos cilindros do motor e das forças inerciais devido ao movimento das partes móveis do motor de combustão interna, e o cálculo das amplitudes de vibração torcional. O método analítico desenvolvido considera o virabrequim como um eixo equivalente de seção circular, onde são aplicados os esforços radiais provenientes das bielas e os torques de vibração torcional, apoiado nos mancais principais. Os momentos fletores e torçores são calculados a partir da integração das equações de equilíbrio estático, considerando um modelo hiperestático, a partir dos quais são determinadas as tensões equivalentes. Ainda neste trabalho, foi realizado um estudo comparativo da aplicação de alguns tipos de absorvedores de vibrações torcionais e seus efeitos nas amplitudes de resposta, tendo como consequência a redução nas tensões no virabrequim. Dois casos foram estudados: um motor Otto de dez cilindros em V e um motor Diesel de seis cilindros em linha. Foram analisados regimes críticos de operação de cada motor: máximo torque, máxima potência e máxima rotação. Um experimento de análise modal do virabrequim de seis cilindros foi realizada de forma a validar as frequências naturais e os modos de vibração dos modelos propostos. Análises dinâmicas transientes com modelos flexíveis foram realizadas para ambos os casos, de forma a correlacionar com os resultados do modelo analítico. Os resultados de análise modal obtidos com os métodos analíticos, flexíveis e experimental foram bastante correlatos entre si, com erros menores que 5%. Os resultados de vibração torcional calculados pelo programa CrankLab também apresentaram excelente correlação com o modelo analítico do programa AVL Excite e o uso de absorvedores resultaram em considerável redução das amplitudes de vibração. Os resultados de tensões obtidos pelo CrankLab apresentaram a mesma ordem de grandeza dos obtidos pelos modelos flexíveis, com erros variando de 1% a 38%. Estes erros podem ser considerados aceitáveis uma vez que as condições de contorno e as simplificações do modelo analítico diferem bastante daquelas utilizadas nos modelos flexíveis. Tem-se como grande vantagem do programa CrankLab o menor tempo de pré processamento e cálculo, podendo ser inferior a 10% na maioria dos casos / Abstract: The crankshaft is one of the most important moving components of an internal combustion engine. It is responsible for converting the oscillating pistons movement into rotating movement by the connecting rods. During engine operation, the crankshaft is submitted to axial, bending and torsional loads, which results in high stressed regions on the component. Due to the phased cylinder combustions, the crankshaft has high levels of torsion load, being the torsional vibration one of the main causes of failures in crankshafts or engine accessories, as pulleys, belts and gears. The present thesis consists in the development of a computational program, called CrankLab, for analytical calculation of stress and fatigue safety factors on automotive crankshafts, which could be applied as a simple engineering tool during the initial crankshaft concept design phase. The study covers the determination of dynamic loads, from the combustion inside the engine cylinders and from the moving parts inertia, and the torsional vibration amplitudes calculation. The analytical method developed considers the crankshaft as an equivalent circular cross section shaft which is supported by the main bearings and where the connecting-rods radial forces and the vibration torques are applied on. The bending and torsion moments are calculated from integration of the static equilibrium equations, considering a hyperestatic model, thus the equivalent stresses can be calculated. Also in this study, a comparison was performed for some torsional vibration damper types, covering the calculation of optimum parameters of inertia, stiffness and damping, evaluating the effects on the output amplitudes within the entire engine speed range and the influence on the crankshaft stresses. The theory was applied for two different cases of study: an Otto V-type ten cylinders engine and a Diesel in-line six cylinders engine. Critical engine operation conditions were analyzed, at the speeds related to peak torque, rated power and overspeed. A modal analysis experiment was performed in order to validate the natural frequencies and modal shapes obtained by the proposed models for the six cylinders crankshaft. Moreover, transient dynamic analyses with flexible bodies were performed in order to compare with the stress results obtained from the analytical model for both cases. The modal analyses results obtained from the analytical, flexible and experimental methods were very good correlated with errors lower than 5%. The torsional vibration results calculated by CrankLab also presented excelent correlation with the analytical module of AVL Excite software. Moreover, the torsional dampers allowed considerable reduction in the vibration amplitudes. The stress results calculated by CrankLab have shown same order of magnitude of those from flexible models with errors variation between 1% and 38%. These errors can be acceptables once the boundary conditions and the analytical model simplifications are great different from those regarded in the flexible models. The most importante advantage of CrankLab is lower time spent in pre processing and calculation tasks, achieving a time saving around 10% in most cases / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
309

Calibration reduction in internal combustion engine fueling control: modeling, estimation and stability robustness

Meyer, Jason 27 July 2011 (has links)
No description available.
310

Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance

Escalona Cornejo, Johan Enrique 13 April 2021 (has links)
[ES] Actualmente, los vehículos propulsados por motores de combustión interna alternativos (MCIA) constituyen uno de los mayores agentes contaminantes para el medio ambiente. En este sentido, ha existido una importante cooperación internacional para promulgar leyes que regulen las emisiones contaminantes. De manera que los fabricantes de coches han impulsado el desarrollo de tecnologías más limpias y amigables con el medio ambiente. Ante esta situación, ha surgido recientemente la electrificación, como uno de los proyectos más ambiciosos de la industria automotriz para los próximos años. Sin embargo, esta meta parece aún lejana en el horizonte. En tal sentido, la hibridación con motores térmicos y eléctricos parece ser el camino a seguir en el corto plazo. Por consiguiente, los MCIA seguirán siendo la principal fuente de propulsión terrestre durante los años venideros. Para mitigar los inherentes efectos contaminantes de los motores de combustión interna, se han propuesto diferentes tecnologías para desarrollar motores más eficientes. Entre ellas, la aplicación de recubrimientos térmicos en las paredes de la cámara de combustión apunta a reducir las pérdidas por calor en el motor, y así aumentar su eficiencia térmica. El objetivo principal de esta tesis es estudiar el impacto de aplicar recubrimientos térmicos en las paredes de la cámara de combustión en motores de combustión interna. En este sentido, determinar los flujos de calor experimentalmente a través de las paredes es complicado y no del todo fiables, debido a que dependen de la medición de las temperaturas de pared. Por este motivo, el CFD-CHT es utilizado. El primer paso fue validar la herramienta computacional que es utilizada para los cálculos en motores de combustión interna. Para ello se realizó un estudio preliminar en geometrías sencillas como una tubería circular o un canal rectangular. Se evaluaron los modelos de transferencia de calor y se determinó la relevancia de ciertos parámetros como la rugosidad. Para complementar el estudio, se realizó un análisis de las temperaturas en una geometría más realista como el pistón de un MCIA. Los valores de temperatura calculados por el software fueron casi iguales a las medidas experimentales. Por consiguiente, la fiabilidad de la herramienta computacional fue verificada. Seguidamente, se plantea una metodología para abordar al problema de modelar capas muy finas de recubrimientos térmicos en el espacio tridimensional. Para de esta manera poder simular las paredes recubiertas en la cámara de combustión. La metodología consiste en definir un material equivalente con un espesor y número de nodos que permitan un mallado computacionalmente realista. Para ello se utilizó un DoE en combinación con un análisis de regresión múltiple. Los primeros estudios se llevaron a cabo en un motor de gasolina. El modelado se llevó a cabo para dos configuraciones: motor con paredes metálicas y motor con pistón y culata recubiertos. A través de un análisis exhaustivo de la transferencia del calor, se evaluó el impacto que tenía aplicar el revestimiento térmico en el motor. La comparación con datos experimentales demuestran la utilidad del cálculo CHT para evaluar las pérdidas de calor en un MCIA. Sin embargo, ninguna mejora fue observada en el motor de gasolina debido al tipo de recubrimiento aplicado en las paredes de la cámara de combustión. Las simulaciones llevadas a cabo en el motor de gasolina permitieron determinar que los cálculos CHT son computacionalmente largos. En este sentido, una serie de estrategias diseñadas a optimizar los cálculos han sido analizadas con el fin de reducir los tiempos de cálculo. A través de este estudio, se encontró una metodología para optimizar la malla del dominio computacional. Esta última, emplea un refinamiento AMR basado en la distancia de pared. Este método es utilizado para modelar el impacto de aplicar un revestimiento tér / [CA] Actualment, els vehicles propulsats per motors de combustió interna alter- natius (MCIA) constitueixen un dels majors agents contaminants per al medi ambient. En aquest sentit, ha existit una important cooperació internacional per a promulgar lleis que regulen les emissions contaminants. De manera que els fabricants de cotxes han impulsat el desenvolupament de tecnologies més netes i amigables amb el medi ambient. Davant aquesta situació, ha sorgit recentment l'electrificació, com un dels projectes més ambiciosos de la indústria automotriu per als pròxims anys. No obstant això, aquesta meta sembla encara llunyana en l'horitzó. En tal sentit, la hibridació amb motors tèrmics i elèctrics sembla ser el camí a seguir en el curt termini. Per consegüent, els MCIA continuaran sent la principal font de propulsió terrestre durant els anys esdevenidors. Per a mitigar els inherents efectes contaminants dels motors de combustió interna, s'han proposat diferents tecnologies per a desenvolupar motors més eficients. Entre elles, l'aplicació de recobriments tèrmics en les parets de la cambra de combustió apunta a reduir les pèrdues per calor en el motor, i així augmentar la seua eficiència tèrmica. L'objectiu principal d'aquesta tesi és estudiar l'impacte d'aplicar reco- briments tèrmics en les parets de la cambra de combustió en motors de combustió interna. En aquest sentit, determinar els fluxos de calor experi- mentalment a través de les parets és complicat i no del tot fiable, pel fet que depenen del mesurament de les temperatures de paret. Per aquest motiu, el CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) és utilitzat. El primer pas va ser validar l'eina computacional que és utilitzada per als càlculs en motors de combustió interna. Per a això es va realitzar un estudi preliminar en geometries senzilles com una canonada circular o un canal rectangular. Es van avaluar els models de transferència de calor i es va determinar la rellevància de certs paràmetres com la rugositat. Per a complementar l'estudi, es va realitzar una anàlisi de les temperatures en una geometria més realista com el pistó d'un MCIA. Els valors de temperatura calculats pel software van ser quasi iguals a les mesures experimentals. Per consegüent, la fiabilitat de l'eina computacional va ser verificada. Seguidament, es planteja una metodologia per a abordar el problema de modelar capes molt fines de recobriments tèrmics en l'espai tridimensional, per a d'aquesta manera poder simular les parets recobertes en la cambra de combustió. La metodologia consisteix a definir un material equivalent amb una grossària i nombre de nodes que permeten un mallat computacionalment realista. Per a això es va utilitzar un DoE (Design of experiments) en combinació amb una anàlisi de regressió múltiple. Els primers estudis es van dur a terme en un motor de gasolina. El mod- elatge es va dur a terme per a dues configuracions: motor amb parets metàl·liques i motor amb pistó i culata recoberts. A través d'una anàlisi exhaustiva de la transferència de la calor, es va avaluar l'impacte que tenia aplicar el revestiment tèrmic en el motor. La comparació amb dades experi- mentals demostren la utilitat del càlcul CHT per a avaluar les pèrdues de calor en un MCIA. No obstant això, cap millora va ser observada en el motor de gasolina a causa de la mena de recobriment aplicada en les parets de la cambra de combustió. Les simulacions dutes a terme en el motor de gasolina van permetre determinar que els càlculs CHT són computacionalment llargs. En aquest sentit, una sèrie d'estratègies dissenyades per a optimitzar els càlculs han sigut analitzades amb la finalitat de reduir els temps de càlcul. A través d'aquest estudi, es va trobar una metodologia per a optimitzar la malla del domini computacional. Aquesta última, empra un refinament AMR basat en la distància de paret. / [EN] Currently, vehicles powered by internal combustion engines (ICE) are targeted as contributing largely to environmental pollution. In this regard, there has been significant international cooperation to enact laws that regulate the polluting emissions. Hence, the car manufacturers have oriented efforts to the development of cleaner and more eco-friendly technologies. In order to face this situation, electrified vehicles have emerged as one of the most promising projects in the automotive industry for the coming years. However, this target still seems far on the horizon. In this sense, hybridization with thermal and electric engines seems to be the path to follow in the short term. Consequently, ICEs will continue to be one of the important sources of terrestrial propulsion in the coming years. To mitigate the inherent polluting effects of internal combustion engines, different technologies have been proposed to develop more efficient engines. Among them, the application of thermal coatings on the combustion chamber walls. This technology aims at reducing the heat losses in the engine, and thus increase its thermal efficiency. The main objective of this thesis is to study the impact of coating the combustion chamber walls of an engine on heat losses and thermal efficiency. The experimental definition of the heat fluxes through the walls is complex and not very reliable because it requires the measurement of wall temperatures. For this reason, CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) is used. The first step was to validate the computational tool employed for CFD-CHT calculations in internal combustion engines. For this, a preliminary study in simple geometries such as a circular pipe or a rectangular channel was performed. Heat transfer models were evaluated and the relevance of certain parameters such as roughness was determined. To reinforce the study, a thermal analysis in a more realistic geometry such as the piston of a CI engine was carried out. The temperature values calculated by the software were almost the same as the experimental measurements. Consequently, the reliability of the computational tool was verified. Next, a methodology was proposed to address the problem of modeling very thin layers of thermal coating for three-dimensional CFD-CHT calculations. The methodology consists in defining an "equivalent material" with a thickness and number of nodes that allow a computationally realistic mesh. For this, a DoE in combination with a multiple regression analysis was employed. The first CFD-CHT simulations in ICEs were carried out for a gasoline engine. The study was performed for two configurations: metallic engine and engine with coated piston and cylinder head. An exhaustive heat transfer analysis was made in order to determine the impact of applying the thermal coating on the engine. Comparison with experimental data proved the suitability of the CHT calculations to evaluate heat losses in ICEs. However, no improvement on engine efficiency was observed in the gasoline engine due to the type of coating applied on the combustion chamber walls. Experience with the gasoline engine calculations showed that CHT calculations were very time consuming. In this regard, some strategies aimed at optimizing the calculations were analyzed in order to reduce calculation times. The most successful methodology was based on AMR cell refinement to optimize the mesh and reduce significantly the computational costs. This approach was used to study the impact of applying a new generation thermal coating on the piston top of a Diesel engine. The results obtained indicated that this type of coating allows for some improvement in the thermal efficiency of the engine without affecting its performance. / The author wishes to acknowledge the financial support received through contract FPI-2018-S2-1205 of the Programa para la Formación de Personal investigador (FPI) 2018 of Universitat Politècnica de València. Parts of the work presented in this thesis have received funding from the European Union’s Horizon 2020 research and innovation programme undergrant agreement No 724084.The author wishes to thank IFPEN for their permission to use their single cylinder engine geometry and experimental results, as well as Saint Gobain Research Provence for providing the coating characteristics.The respondent wants to express its gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performingthe CFD-CHT calculations using CONVERGE software / Escalona Cornejo, JE. (2021). Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165244

Page generated in 0.0261 seconds