• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 80
  • 25
  • 14
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 342
  • 342
  • 309
  • 98
  • 73
  • 55
  • 53
  • 52
  • 52
  • 51
  • 50
  • 40
  • 38
  • 38
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of Braided Composite Geometric Factors Using Three Dimensional Digital Image Correlation Measurement Techniques

Leung, Cheequn Unknown Date
No description available.
2

Residual stress and fracture in high temperature ceramics

Aswad, Mohsin Abbas January 2012 (has links)
Recrystallised alumina is used as a high performance crucible material. Its thermal shock resistance is known to be affected by component shape, and also by processing variables, since the defects and internal stress at both the microscale (i.e. between grains due to anisotropic crystal properties) and macroscale (i.e. due to differential shrinkage during sintering) influence the fracture strength. The aim of this thesis is to study the nucleation and growth of defects in pure alumina and Cr-doped alumina, and to investigate how their behavior is affected by residual stresses, such those introduce by thermal expansion of the crystal grains. In this thesis, digital image correlation is applied to polycrystalline aluminas (i.e. Cr-doped alumina and pure alumina with average grain 3.6 µm and 1.5 µm respectively) that are stressed in an optical microscope. The defect size and the surface crack opening displacement were measured using digital image correlation. The distribution and population of crack nucleating defects were obtained by in-situ observation of the stressed surface and by analysis with digital image correlation. These data are then compared with independent measurements of the defect population using Hertzian indentation, from which defect populations are derived for the pure and Cr-doped alumina samples. Grain boundary plane and grain orientations in the vicinity of crack nuclei were characterised by electron microscopy. Crack nuclei were shown to develop at boundaries predicted to have high tensile thermal strains, caused by the orientation of the grain boundary plane relative to the adjacent grains, such as basal plane grain facets. The techniques of focused ion beam (FIB) milling and electron backscatter diffraction (EBSD) characterization of the crystallographic orientations and structure of cracked grain boundaries were used to provide data for a model to explain the cracking of these boundaries as a result of the thermal strains and the anisotropic thermal expansion behaviour of alumina.
3

Three Dimensional Deformation of Orthodontic Brackets

Melenka, Garrett W. Unknown Date
No description available.
4

Deformation mechanims of two-phase titanium alloys

Sandala, Rebecca Sarah January 2014 (has links)
Two-phase Ti6246 alloy is a light weight material exhibiting very high strength at higher temperatures compared to the commonly used Ti64 alloy. This particular alloy is used at the later stages of compressor discs within the aero engines. However, compressor discs undergo a number of cyclic stresses, which could eventually lead to fatigue failure. In order to optimize the microstructure for design and lifing models, an improved understanding of the localised deformation mechanisms is crucial, particularly at the surface, as cracks can be initiated leading to failure and in turn affect the life expectancy of the component. Two-phase alloys in use have very complex lamellar microstructures comprising of a mixture of coarse and fine phases and their role in deformation can be very complex and difficult to understand. The focus of this study was particularly based on the importance of the beta phase in strengthening two-phase microstructures. Therefore, this study has been simplified to compare model lamellar microstructures, which have particular sizes of beta phase in between alpha lamellae. Digital Image Correlation along with high resolution imaging was used to develop a detailed understanding of the localised deformation in these microstructures. Widening the beta phase in-between alpha lamellae caused a more homogenous deformation, while ageing the beta phase with fine secondary alpha strengthened the microstructure. However, all microstructures showed that the single continuous alpha layer at beta grain boundaries depicted the highest amount of deformation, which can be detrimental for the life of the component. The behaviour of slip at the α/β interface not only depended on the size of the phases but also depended on the neighbouring crystallographic orientations and the relationship of the two phases, specifically the alignment of the close packed slip directions. Strain maps of these microstructures were subsequently related to corresponding Schmid factor maps and crystal plasticity models to improve this understanding.
5

Methodologies for Quantifying and Characterizing Strain Fields Resulting from Focused Ultrasound Therapies in Mouse Achilles Tendon using Ultrasound Imaging and Digital Image Correlation

Salazar, Steven Anthony 04 August 2022 (has links)
Tendinopathy is a common pathology of tendons characterized by pain and a decrease in function resulting from changes in the tissue's structure and/or composition due to injury. Diagnosis of tendinopathy is determined by the qualitative analysis of a trained physician usually with assistance from an imaging modality. Although physicians can often identify tendinopathy, there are no quantitative metrics to evaluate tendon fatigue, damage, or healing. Physical therapy (PT) is a common treatment for patients with tendinopathy, and recent studies have investigated Focused Ultrasound (FUS) for its treatment of tendons. Developments in the use of FUS as a therapeutic have led to studies of the underlying mechanisms by which it operates. Digital Image Correlation (DIC) is a non-contact method of quantifying tissue displacements and strains of a deforming material using high resolution imaging DIC programs can evaluate and interpolate strain data by applying statistical image processing algorithms and solid continuum mechanics principles using a set of sequential image frames capturing the mechanical deformation of the specimen during testing. The studies presented in this thesis investigate methodologies for using DIC with ultrasound imaging of mouse Achilles tendons to characterize strains resulting from FUS therapies. The first method is based upon an orthogonal configuration of therapy and imaging transducers while the second investigates a coaxial experimental configuration. This work explores DIC as a viable means of quantifying the mechanical stimulation caused by FUS therapies on tendon tissue through ultrasound imaging to better understand the underlying mechanisms of FUS therapy. / Master of Science / Tendinopathy is a common injury that many people will experience in their lifetime. Pain and swelling are common symptoms and can make daily actions uncomfortable to perform. Physical therapy (PT) is one of the most common ways to help relieve the symptoms of this condition. A therapy being investigated to help treat tendinopathy utilizes Focused Ultrasound (FUS) technology to help the healing process. PT can be difficult and painful for those experiencing tendinopathy, but if a therapeutic like FUS could mimic the effects of PT, then some patients would not need to perform these physically demanding tasks. To understand if this treatment is viable, we need to better understand the underlying mechanisms by which it operates. Therefore, we are investigating the mechanical stimulation that FUS imparts on tendons because it is believed that the mechanical stimulations from exercise are a primary contributor to healing. Specifically, we want to evaluate the kind of strains applied by FUS therapies to inform decisions about dosage. One method uses Digital Image Correlation (DIC). DIC is a method of evaluating displacements and strains using non-contact high resolution imaging. DIC works using statistically motivated algorithms to calculate the deformation between subsequent video frames in a given material undergoing a state of stress. Using this technology along with ultrasound imaging, this work gives a preliminary exploration of using DIC as a means of quantifying strain to better understand the underlying mechanisms of the mechanical stimulations caused by FUS therapy.
6

Analysis and optimisation of disc brake calipers

Sergent, Nicolas January 2010 (has links)
Disc brake calipers are subjected to complex mechanical loading and interaction of individual components in a typical brake assembly makes design improvement very challenging. To analyse caliper behaviour, complex Finite Element models were created and successfully validated using a variety of experimental techniques, including exceptionally suitable Digital Image Correlation. A novel methodology to optimise caliper design was developed, using non-linear contact Finite Element Analysis and topology optimisation, to generate lightweight, high performance brake calipers. The method was used on a Formula 1 brake assembly and significant improvement in structural design was achieved, with the new caliper being lighter and stiffer than the original. The same approach was used on more conventional 4 pistons calipers using various boundary conditions with particular focus on mass reduction and considerably lighter designs were achieved. The influence of specific features of the optimised calipers on the structural performance was also successfully investigated.
7

DYNAMIC MONITORING OF RAIL AND BRIDGE DISPLACEMENTS USING DIGITAL IMAGE CORRELATION

Murray, Christopher 26 September 2013 (has links)
Rail and bridge infrastructure assets are critical elements of Canada’s transportation network and their continued efficient and safe operation is necessary to ensure the nation’s economic livelihood. Monitoring technologies that can detect changes in performance as well as precursors to failure are an important element of ensuring this efficient and safe operation. Digital Image Correlation (DIC) is a monitoring technology that has the potential to provide critical data for infrastructure assessment and to replace various conventional sensors with one integrated monitoring solution. In this research, the accuracy of DIC is evaluated using numerical, laboratory and field-based experiments. The sources of error of particular relevance to dynamic measurement using DIC are identified as (i) bias error in the sub-pixel interpolation scheme, (ii) the ratio of sample rate to the frequency of the signal being monitoring and (iii) the signal to noise ratio. It is also shown that the chosen sub-pixel interpolation scheme can greatly affect the accuracy of dynamic measurements. The use of DIC was investigated for field monitoring of both horizontal and vertical railway displacements at sites with good and poor subgrade conditions under dynamic train loading. It is shown that there is a significant benefit to using an absolute displacement measurement system rather than a relative displacement measurement system as the former can capture irrecoverable rail displacements in both the vertical and horizontal directions. Finally, DIC was also used for field monitoring of a very stiff reinforced concrete bridge during static and dynamic load tests. It is shown that when using DIC for deflection monitoring, corrections may have to be made to compensate for errors such as camera jitter and drift to acquire the most accurate results. Two potential correction methods were the use of a fixed reference point and generating composite images using average pixel intensity values from multiple images. It was found that using a fixed reference point was the optimal choice in this bridge test. It is concluded that DIC can be used as an effective displacement measurement tool for bridge assessment because it shows excellent correlation with linear potentiometer results and it can allow measurements to be taken without having to close the bridge. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-09-26 15:40:16.744
8

Evaluating the Accuracy of Finite Element Models at Reduced Length Scales

Kemp, SCOTT CONNOR 01 October 2013 (has links)
Finite element models are used frequently in both engineering and scientific research. While they can provide useful information as to the performance of materials, as length scales are decreased more sophisticated model descriptions are required. It is also important to develop methods by which existing models may be verified against experimental findings. The present study evaluates the ability of various finite element models to predict materials behaviour at length scales ranging from several microns to tens of nanometers. Considering this motivation, this thesis is provided in manuscript form with the bulk of material coming from two case studies. Following an overview of relevant literature in Chapter 2, Chapter 3 considers the nucleation of delta-zirconium hydrides in a Zircaloy-2 matrix. Zirconium hydrides are an important topic in the nuclear industry as they form a brittle phase which leads to delayed hydride cracking during reactor start-up and shut-down. Several FE models are used to compare present results with literature findings and illustrate the weaknesses of standard FE approaches. It is shown that standard continuum techniques do not sufficiently capture the interfacial effects of an inclusion-matrix system. By using nano-scale material descriptions, nucleation lattice strains are obtained which are in good agreement with previous experimental studies. The motivation for Chapter 4 stems from a recognized need to develop a method for modeling corrosion behaviour of materials. Corrosion is also an issue for reactor design and an ability to predict failure points is needed. Finite element models could be used for this purpose, provided model accuracy is verified first. In Chapter 4 a technique is developed which facilitates the extraction of sub-micron resolution strain data from correlation images obtained during in-situ tensile deformation. By comparing image correlation results with a crystal plasticity finite element code it is found that good agreement between the two exists. The method outlined is material independent and could be applied to most metallurgical studies. Chapter 5 reviews the findings of each case study and makes suggestions as to the direction of future research. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-09-30 16:05:52.934
9

Monocular Vision and Image Correlation to Accomplish Autonomous Localization

Schlachtman, Matthew Paul 01 June 2010 (has links)
For autonomous navigation, robots and vehicles must have accurate estimates of their current state (i.e. location and orientation) within an inertial coordinate frame. If a map is given a priori, the process of determining this state is known as localization. When operating in the outdoors, localization is often assumed to be a solved problem when GPS measurements are available. However, in urban canyons and other areas where GPS accuracy is decreased, additional techniques with other sensors and filtering are required. This thesis aims to provide one such technique based on monocular vision. First, the system requires a map be generated, which consists of a set of geo-referenced video images. This map is generated offline before autonomous navigation is required. When an autonomous vehicle is later deployed, it will be equipped with an on-board camera. As the vehicle moves and obtains images, it will be able to compare its current images with images from the pre-generated map. To conduct this comparison, a method known as image correlation, developed at Johns Hopkins University by Rob Thompson, Daniel Gianola and Christopher Eberl, is used. The output from this comparison is used within a particle filter to provide an estimate of vehicle location. Experimentation demonstrates the particle filter's ability to successfully localize the vehicle within a small map that consists of a short section of road. Notably, no initial assumption of vehicle location within this map is required.
10

A biomedical engineering approach to investigating flow and wall shear stress in contracting lymphatics

Dixon, James Brandon 16 August 2006 (has links)
Collecting microlymphatics play a vital role in promoting lymph flow from the initial lymphatics in the interstitial spaces to the large transport lymph ducts. In most tissues, the primary mechanism for producing this flow is the spontaneous contractions of the lymphatic wall. Individual units, known as lymphangion, are separated by valves that help prevent backflow when the vessel contracts, thus promoting flow through the lymphatic network. Lymphatic contractile activity is inhibited by flow in isolated lymphatics, however there are virtually no in situ measurements of lymph flow in these vessels. Initially, a high speed imaging system was set up to image in situ preparations at 500 fps. These images were then manually processed to extract information regarding lymphocyte velocity (-4 to 10 mm/sec), vessel diameter (25 to 165 um), and particle location. Fluid modeling was performed to obtain reasonable estimates of wall shear stress (-8 to 17 dynes/cm2). One of the difficulties encountered was the time consuming methods of manual particle tracking. Using previously captured images, an image correlation method was developed to automate lymphatic flow measurements and to track wall movements as the vessel contracts. Using this method the standard error of prediction for velocity measurements was 0.4 mm/sec and for diameter measurements it was 7.0 µm. It was found that the actual physical quantity being measured through this approach is somewhere between the spatially averaged velocity and the maximum velocity of a Poiseuille flow model.

Page generated in 0.0823 seconds