Spelling suggestions: "subject:"image correlation"" "subject:"image borrelation""
101 |
CHARACTERIZATION OF SOLID COMPOSITE PROPELLANTS USING TWO-DIMENSIONAL DIGITAL IMAGE CORRELATION AT LARGE AND SMALL SCALESChristopher Matthew Jarocki (12464217) 27 April 2022 (has links)
<p> </p>
<p>Solid composite propellants are used widely in the aerospace industry due to their desirable mechanical and performance characteristics, including their simplicity, high initial thrust and volume specific impulse. Knowledge of the mechanical properties is needed due to the stresses encountered by a solid rocket motor propellant during thermal cycling while in storage, during rapid ignition transients, and dynamic launch and flight phases. These stresses could damage the propellant grain, leading to an unplanned increase in burning surface area and subsequent catastrophic disassembly. </p>
<p>Tensile testing with the conventionally used JANNAF Type C “dogbones” can be material-expensive and time-consuming, particularly if determining the propellant’s response to different strain rates and temperatures. The rapid development of propellants with novel ingredients or formulations is especially hampered by material and time constraints. Using small-scale tests, typically using “micro-dogbone” samples, tensile properties can be characterized with a strong correlation to standard JANNAF Type C samples and only use a fraction of the normally required material. The correlation between the two sample sizes can be demonstrated for a wide range of propellant formulations and environmental conditions, such as extreme temperatures used in test conditions. Propellant characterization can also be relatively slow due to the data analysis time required to ensure that samples did not contain voids or other defects. Using 2-D Digital Image Correlation (DIC) technology, a baseline behavior can be established for propellant samples that contain voids to help screen data faster, leading to a faster characterization time for propellants and reduced cost of the program. Overall, the DIC system is a promising method of non-contact strain measurement that can help characterize and screen solid composite propellants, while micro-dogbones show great promise in being able to reduce the time and cost required for characterizing novel solid propellants. </p>
|
102 |
Characterization of Slip Activity in the Presence of Slip Bands Using Surface-Based Microscopy TechniquesSperry, Ryan Aaron 27 October 2020 (has links)
Further understanding of mesoscale slip mechanics is crucial to future development of polycrystalline metals with improved performance. The research contained within this thesis aims to characterize localized mesoscale slip on slip bands further through two studies. First, a comprehensive comparison of slip system identification techniques was carried out to further validate each method as well as compare advantages and disadvantages of each. Second, slip bands in the presence of grain boundaries were studied to better characterize the dislocation content and behavior. In the first study, the use of SEM-DIC, AFM, ECCI, and HR-EBSD to characterize slip-system activity was assessed on the same material volume of Ti-7Al. This study presents a robust comparison of the various methods for the first time, including an assessment of their advantages and disadvantages, and how they can be used effectively in a complementary manner. The analysis of the different approaches was carried out in a blind manner independently at three different universities. A Ti-7Al specimen was deformed in uniaxial tension to approximately 3% axial strain, and the active slip systems were independently identified using (i) trace analysis; (ii) in-SEM digital image correlation, (iii) observations of residual dislocations from ECCI, and (iv) long-range rotation gradients through HR-EBSD, with consistent trace identification in all cases. Displacement data from AFM was used to augment the SEM-DIC displacement data by providing complementary out of plane displacement information. Furthermore, short-range dislocation gradients (measured by DIC) provided insight into the residual geometrically necessary dislocation (GND) content, and was consistent with the GND content extracted from EBSD data and ECCI images, confirming the presence of residual GNDs on the dominant slip systems resulting in visible slip bands. These approaches can be used in tandem to provide multi-modal information on slip band identification, strain and orientation gradients, out-of-plane displacements, and the presence of GNDs and SSDs, all of which can be used to inform and validate the development of dislocation-based crystal plasticity and strain gradient models. In the second study, shear strain profiles along slip bands in a modified Rolls-Royce nickel superalloy (RR1000) were analyzed for a tensile sample deformed by 2%. The strain increased with distance away from a grain boundary (GB), with maximum shear strain towards the center of the grain, indicating that dislocation nucleation generally occurred in the grain interior. The strain gradients in the neighborhood of the GBs were quantified and generally correlated with rotation about the active slip system line direction. This leads to an ability to determine the active slip system in these regions. The dislocation spacing and pileup stresses were inferred. The dislocation spacing closely follows an Eshelby analytical solution for a single ended pileup of dislocations under an applied stress. The distribution of pileup stress values for GBs of a given misorientation angle follows a log-normal distribution, with no correlation between the pileup stress and the GB misorientation angle. Furthermore, there is no observed correlation between various transmissivity factors and slip band pileup stress. Hence it appears that the obstacle strength of any of the observed GBs is adequate to facilitate the dislocation pileups present in the slip bands. However, slip band transmission does correlate with transmissivity factors, with the current study focusing on the Luster and Morris m'-factor. Observation of strain profiles of transmitted bands indicate dislocation nucleation locations.
|
103 |
A Refined Methodology for Calibrating Premium Connection Make-upsOstergaard, Erik Barr 21 March 2013 (has links)
Digital Image Correlation is used to generate high-spatial-density full-field displacement<br />and strain data of a connection box outer diameter for use in the calibration of finite element<br />make-up models. Image acquisition and data processing techniques are discussed and best<br />practice recommendations are made. 3D-wedge models consisting of a twenty-degree sweep of<br />the connection geometry are generated from manufacturer supplied profiles. Deformation<br />plasticity material models are developed from identified minimum strength material coupons.<br />Axisymmetric and 3D meshing schemes are used to capture the geometric complexity, supply<br />enough resolution to represent seal performance, and provide a solution in an acceptable<br />timeframe. Several techniques for achieving good contact resolution are presented. The<br />mechanics of the full 3D connection makeup are decomposed into simple idealized<br />representations. Finite element boundary conditions are developed to adequately represent the<br />360-degree make-up mechanics in a wedge section. The wedge model is loaded to achieve a<br />torque-rotation coupling which satisfies the experimental make-up conditions. This model<br />displays a much improved ability to capture box outer diameter strain and displacement fields,<br />and thus better represents the mechanics of a connection make-up. A 3D inspired axisymmetric<br />pretension loading scheme is developed which enables the 3D-wedge seal conditions to be<br />replicated in a computationally efficient axisymmetric form for connection performance<br />evaluation. Seal metrics are developed and converged to evaluate connection sealing capabilities<br />in the power-tight configuration. Modeling error metrics are developed, and the final 3D-wedge<br />model is evaluated relative to the experimental DIC data. / Master of Science
|
104 |
Effect of Grain Size on Mechanical Properties of Dual Phase Steel Composed of Ferrite and Martensite / フェライト+マルテンサイトDP鋼の変形挙動に及ぼす粒径の影響Myeong-Heom, Park 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20367号 / 工博第4304号 / 新制||工||1667(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 田中 功, 教授 乾 晴行 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
105 |
LOAD RESPONSE AND SOIL DISPLACEMENT FIELDS FOR SHALLOW FOUNDATIONS IN SAND USING THE DIC TECHNIQUERameez Ali Raja (11327430) 15 June 2023 (has links)
<p>Shallow foundations are used to support small-to-medium size structures, and their capacity derives from the strength of strong, near-surface soils. The design of shallow foundations is done by proportioning the plan dimensions of the foundation element by considering three factors: (1) the structural stability of the foundation, (2) the allowable bearing pressure of the soil supporting the foundation to prevent ultimate bearing capacity failure, and (3) the tolerable total and differential settlements to meet serviceability requirements under normal working loads. Different theories have been developed to estimate the bearing capacity of a foundation, mostly relying on the Terzaghi (1943) form of the bearing capacity equation with the superposition of three terms. The partly theoretical and empirical methods of bearing capacity predictions rely on an assumed failure mechanism within the soil. In addition, the soil itself is considered to be a perfectly plastic material and its strength is accounted for through non-dimensional bearing capacity factors. However, the boundary-value problem of footing penetration, in reality, is quite complex and the use of the traditional bearing capacity, with use of the principle of superposition, leads to somewhat conservative results. The challenges involved in a footing penetration problem emanate not only from the difficulties in estimating soil strength parameters but also because the footing penetration problem involves large deformations and strains, which localize to form shear bands that propagate in the soil domain until the "collapse" of the sand-footing system.</p>
<p>The overarching aim of this research is the study of the response of shallow foundations on clean silica sands by investigating the measured bearing capacities and getting insights into the failure mechanisms that develop as a result of the soil displacements below the base of the foundation element. This was experimentally achieved using a combination of physical modelling (by performing a series of model footing 1g load tests inside a novel half-circular calibration chamber) and image analysis (using digital image correlation technique). The load-settlement response of the model footings is investigated by performing displacement-controlled load tests on model strip and square footings placed either on the surface or embedded in the sand samples of varying relative densities prepared inside the calibration chamber using the method of air-pluviation. A series of high-resolution images collected during model footing loading were analyzed using the digital image correlation (DIC) technique to obtain the displacement and strain fields in the sand domain. Two fully characterized silica sands, Ohio Gold Frac (OGF) and Ottawa 20-30 (OTC) are used in the research. Different testing variables that were considered in the experimental setup are: (1) sand particle morphology, (2) sand sample's relative density, (3) sand layer thickness, and (4) footing shape, size, and embedment depth. A detailed test matrix was formulated to isolate these variables and study the effects of each on both the bearing capacity and the associated failure mechanism. Accordingly, this article-based dissertation is organized to describe the results of three studies.</p>
<p>In the first study, the effects of relative density and particle morphology on the bearing capacity and failure mechanism of a model strip footing were investigated. This was done by using two silica sands: OGF sand and OTC sand, both the sands have comparable mineralogy, gradation, and particle sphericity; however, they have markedly different values of particle roundness. Samples of both sands were prepared at relative densities of 90%, 65%, and 30%. The evolution of the footing's collapse mechanism was considered by selecting relevant points on the load-settlement curves. A novel methodology was adapted to record the thickness of the shear band that developed in the sand domain. In the second study, the effects of the presence of a stiff layer below the strip footing were investigated. This was achieved by load testing the model strip footing on OTC sand layer of limited thickness. To simulate the sand-bedrock system, a half-circular steel plate supported by a stack of hollow concrete blocks was used. Load tests on model strip footing were performed on OTC sand samples without the presence of a stiff base and on the sand samples underlain by a stiff base located at depths equal to 0.5B and 1B below the base of the footing. The effect of the presence of the stiff base on the limit unit bearing capacity of the footing and stiffness of the sand-footing system were investigated. In addition, the contours of the cumulative maximum shear strains, horizontal displacements, and vertical displacements that develop in the sand layer are presented for both cases of with and without the presence of the stiff base. In the third study, the effects of footing geometry and embedment on the bearing capacity and failure mechanism were investigated. Load tests were performed on surface and embedded model strip and square footings on dense, medium dense, and loose OTC sand samples. The effects of choice of flow rule (associative versus non-associative) on the bearing capacity calculation and the increase in bearing capacity due to footing embedment (bearing capacity ratio) were determined. In addition, a framework is proposed to experimentally determine the shape and depth factors using strip and square footings of equal widths considering the flow rule non-associativity, conditions of low confinement, and different loading paths.</p>
<p>The results of the experimental program presented in this research on bearing capacity, displacement fields, strain fields, and failure mechanisms for different footing sizes and shapes under different testing conditions show that that the footing's collapse mechanism depends on the relative density of the sand sample, sand particle morphology, and the footing geometry. Significant differences in the bearing capacity of model footings due to sand particle morphology and sand sample density were observed. The shear band thickness is also shown to be dependent on the shape of the sand particles. It was also observed that the scale effects in model footing tests are closely related to sand dilatancy. For a sand layer of finite thickness underlain by a stiff base it is shown that the critical depth of the stiff base is greater for stiffness calculation than that for the bearing capacity calculation. DIC analysis results provided valuable insights to the footing penetration problem and corroborated the theoretical knowledge about the failure modes in sandy soils. It is shown that the failure mechanism extend deeper and wider for sands with angular particles as compared to the sand with rounded particles. DIC analysis also revealed that as the distance between the footing base and stiff layer reduces, the shear bands are more readily formed but their lateral extents are reduced considerably. The high-quality experimental data provided in this dissertation is aimed to be useful to researchers working on the validation of numerical simulations of footing penetration in sands.</p>
|
106 |
Ultrasonic Effect on the Plastic Deformation Behavior of MetalsKang, Jiarui 09 December 2022 (has links)
No description available.
|
107 |
Experimental Techniques for Shear Testing of Thin Sheet Metals and Compression Testing at Intermediate Strain RatesGardner, Kevin Alexander 24 July 2013 (has links)
No description available.
|
108 |
A Study of Algorithms Based on Digital Image Correlation for Embedding in a Full-Fiield Displacement Sensor with Subpixel ResolutionChakinala, Shilpa 19 September 2013 (has links)
No description available.
|
109 |
Real-Time 2D Digital Image Correlation to Measure Surface Deformation on Graphics Processing Unit using CUDA Cvechalapu, uday bhaskar 05 June 2018 (has links)
No description available.
|
110 |
THE USE OF ELECTRICAL RESISTANCE TO MONITOR CRACK GROWTH IN NON-OXIDE CERAMIC MATRIX COMPOSITESEL Rassi, Joseph 04 December 2022 (has links)
No description available.
|
Page generated in 0.1091 seconds