• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 28
  • 18
  • 13
  • 8
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 343
  • 343
  • 78
  • 71
  • 63
  • 56
  • 52
  • 38
  • 32
  • 32
  • 28
  • 28
  • 28
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Fúze a analýza multidimenzionálních medicínských obrazových dat / Fusion and Analysis of Multidimensional Medical Image Data

Peter, Roman January 2013 (has links)
Analýza medicínských obrazů je předmětem základního výzkumu již řadu let. Za tu dobu bylo v této oblasti publikováno mnoho výzkumných prací zabývajících se dílčími částmi jako je rekonstrukce obrazů, restaurace, segmentace, klasifikace, registrace (lícování) a fúze. Kromě obecného úvodu, pojednává tato disertační práce o dvou medicínsky orientovaných tématech, jež byla formulována ve spolupráci s Philips Netherland BV, divizí Philips Healthcare. První téma je zaměřeno na oblast zpracování obrazů subtrakční angiografie dolních končetin člověka získaných pomocí výpočetní X-Ray tomografie (CT). Subtrakční angiografie je obvykle využívaná při podezření na periferní cévní onemocnění (PAOD) nebo při akutním poškození dolních končetin jako jsou fraktury apod. Současné komerční metody nejsou dostatečně spolehlivé už v předzpracování, jako je například odstranění pacientského stolu, pokrývky, dlahy, apod. Spolehlivost a přesnost identifikace cév v subtrahovaných datech vedoucích v blízkosti kostí je v důsledku Partial Volume artefaktu rovněž nízká. Automatické odstranění kalcifikací nebo detekce malých cév doplňujících nezbytnou informaci o náhradním zásobení dolních končetin krví v případě přerušení hlavních zásobujících cév v současné době rovněž nesplňují kritéria pro plně automatické zpracování. Proto hlavním cílem týkající se tohoto tématu bylo vyvinout automatický systém, který by mohl současné nedostatky v CTSA vyšetření odstranit. Druhé téma je orientováno na identifikaci patologických změn na páteři člověka v CT obrazech se zaměřením na osteolytické a osteoblastické léze u jednotlivých obratlů. Tyto změny obvykle nastávají v důsledků postižení metastazujícím procesem rakovinového onemocnění. Pro detekci patologických změn je pak potřeba identifikace a segmentace jednotlivých obratlů. Přesnost analýzy jednotlivých lézí však závisí rovněž na správné identifikaci těla a zadních segmentů u jednotlivých obratlů a na segmentaci trabekulárního centra obratlů, tj. odstranění kortikální kosti. Během léčby mohou být pacienti skenováni vícekrát, obvykle s několika-mesíčním odstupem. Hodnocení případného vývoje již detekovaných patologických změn pak logicky vychází ze správné detekce patologií v jednotlivých obratlech korespondujících si v jednotlivých akvizicích. Jelikož jsou příslušné obratle v jednotlivých akvizicích obvykle na různé pozici, jejich fúze, vedoucí k analýze časového vývoje detekovaných patologií, je komplikovaná. Požadovaným výsledkem v tomto tématu je vytvoření komplexního systému pro detekci patologických změn v páteři, především osteoblastických a osteolytických lézí. Takový systém tedy musí umožnovat jak segmentaci jednotlivých obratlů, jejich automatické rozdělení na hlavní části a odstranění kortikální kosti, tak také detekci patologických změn a jejich hodnocení. Ačkoliv je tato disertační práce v obou výše zmíněných tématech primárně zaměřena na experimentální část zpracování medicínských obrazů, zabývá se všemi nezbytnými kroky, jako je předzpracování, registrace, dodatečné zpracování a hodnocení výsledků, vedoucími k možné aplikovatelnosti obou systému v klinické praxi. Jelikož oba systémy byly řešeny v rámci týmové spolupráce jako celek, u obou témat jsou pro některé konkrétní kroky uvedeny odkazy na doktorskou práci Miloše Malínského.
242

Registro de imagens por correlação de fase para geração de imagens coloridas em retinógrafos digitais utilizando câmera CCD monocromática / Image registration using phase correlation to generate color images in digital fundus cameras using monochromatic CCD camera

Stuchi, José Augusto 10 June 2013 (has links)
A análise da retina permite o diagnostico de muitas patologias relacionadas ao olho humano. A qualidade da imagem e um fator importante já que o médico normalmente examina os pequenos vasos da retina e a sua coloração. O equipamento normalmente utilizado para a visualização da retina e o retinógrafo digital, que utiliza sensor colorido com filtro de Bayer e luz (flash) branca. No entanto, esse filtro causa perda na resolução espacial, uma vez que e necessário um processo de interpolação matemática para a formação da imagem. Com o objetivo de melhorar a qualidade da imagem da retina, um retinógrafo com câmera CCD monocromática de alta resolução foi desenvolvido. Nele, as imagens coloridas são geradas pela combinação dos canais monocromáticos R (vermelho), G (verde) e B (azul), adquiridos com o chaveamento da iluminação do olho com LED vermelho, verde e azul, respectivamente. Entretanto, o pequeno período entre os flashes pode causar desalinhamento entre os canais devido a pequenos movimentos do olho. Assim, este trabalho apresenta uma técnica de registro de imagens, baseado em correlação de fase no domínio da frequência, para realizar precisamente o alinhamento dos canais RGB no processo de geração de imagens coloridas da retina. A validação do método foi realizada com um olho mecânico (phantom) para a geração de 50 imagens desalinhadas que foram corrigidas pelo método proposto e comparadas com as imagens alinhadas obtidas como referência (ground-truth). Os resultados mostraram que retinógrafo com câmera monocromática e o método de registro proposto nesse trabalho podem produzir imagens coloridas da retina com alta resolução espacial, sem a perda de qualidade intrínseca às câmeras CCD coloridas que utilizam o filtro de Bayer. / The analysis of retina allows the diagnostics of several pathologies related to the human eye. Image quality is an important factor since the physician often examines the small vessels of the retina and its color. The device usually used to observe the retina is the fundus camera, which uses color sensor with Bayer filter and white light. However, this filter causes loss of spatial resolution, since it is necessary a mathematical interpolation process to create the final image. Aiming at improving the retina image quality, a fundus camera with monochromatic CCD camera was developed. In this device, color images are generated by combining the monochromatic channels R (red), G (green) and B (blue), which were acquired by switching the eye illumination with red, green and blue light, respectively. However, the short period between the flashes may cause misalignment among the channels because of the small movements of the eye. Thus, this work presents an image registration technique based on phase correlation in the frequency domain, for accurately aligning the RGB channels on the process of generating retina color images. Validation of the method was performed by using a mechanical eye (phantom) for generating 50 misaligned images, which were aligned by the proposed method and compared to the aligned images obtained as references (ground-truth). Results showed that the fundus camera with monochromatic camera and the method proposed in this work can produce high spatial resolution images without the loss of quality intrinsic to color CCD cameras that uses Bayer filter.
243

Mosaïque d'images cutanées avec inférence topologique et ajustement global / Skin Image Mosaicing with Topological Inference and Global Adjustment

Faraz, Khuram 14 December 2017 (has links)
La télédermatologie présente plusieurs avantages par rapport aux consultations traditionnelles en cabinet avec un dermatologue. Elle est particulièrement utile pour faciliter l'accès aux soins dermatologiques pour les patients ayant des problèmes de mobilité ou habitant loin des secteurs géographiques médicalisés. Un schéma de mosaïquage automatique d’images dédié à la création des panoramas étendus des vidéo-séquences de peau est proposé pour surmonter les limitations posées par le champ de vue réduit des images stationnaires acquises par les dispositifs actuellement utilisés. Les vidéo-séquences utilisées à cet effet sont acquises en utilisant un dispositif spécialement conçu pour un rendu colorimétrique contrôlé de la surface de la peau. Après une étude des diverses méthodes de recalage d'images existantes, une approche optimale est proposée, avec un certain compromis entre la précision de recalage et le temps de calcul, pour la superposition des parties communes des images cutanées. En outre, une approche pour affiner la correspondance initiale des points caractéristiques extraits est présentée. L'étude présentée porte principalement sur la construction cohérente d’une mosaïque dans son ensemble. Pour atteindre cet objectif, un schéma de mosaïque capable de générer des panoramas cohérents à partir de vidéo-séquences longues est présenté. Ce schéma estime dynamiquement la topologie de la trajectoire des images dans le plan de mosaïquage. Cela permet de placer les images sur le plan panoramique avec un nombre réduit d'images sur le chemin suivi pour atteindre une image donnée à partir d'une image de référence, ce qui réduit non seulement l'accumulation des erreurs, mais permet également d'éviter les interruptions dans le mosaïquage en excluant les paires d'images dont le recalage ne serait pas réussi. L'approche proposée offre une robustesse vis-à-vis des recalages échoués en trouvant des trajets alternatifs. En outre, un mode d'ajustement global pour améliorer davantage la cohérence de la mosaïque est présenté / Teledermatology offers several advantages in comparison to the traditional in-place consultations with a dermatologist. It is particularly useful for easing the access to the dermatological care for patients with mobility or travel constraints. A dedicated mosaicing scheme for creating extended panoramas of skin video sequences is proposed to surmount the limitations posed by the small field of view of stationary images acquired by currently used devices. The video sequences used for this purpose are acquired using a specially designed device for a colorimetrically correct rendering of the skin surface. After a study of various image registration approaches, an approach optimally suited to skin image registration with some compromise between registration accuracy and computation time is selected. In addition, an approach for refining the initially detected key-point correspondence is presented. Central focus of this study is on the overall coherent construction of the mosaic. To achieve this objective, a mosaicing scheme capable of generating coherent panoramas from long video sequences is presented. This scheme dynamically estimates the topology of the image trajectory in the panoramic plane to mosaic the images by reducing the number of images over the path used for reaching a given image from a reference image in order to place it on the panoramic plane. A small number of images reduces the accumulated errors, thus improving the visual coherency of the overall mosaic. Besides, the proposed approach offers robustness against failed registrations, which would interrupt the mosaicing process in the absence of the alternative paths. Moreover, a global adjustment scheme for further improving the coherency of the mosaic is presented
244

Adaptive registration using 2D and 3D features for indoor scene reconstruction. / Registro adaptativo usando características 2D e 3D para reconstrução de cenas em ambientes internos.

Perafán Villota, Juan Carlos 27 October 2016 (has links)
Pairwise alignment between point clouds is an important task in building 3D maps of indoor environments with partial information. The combination of 2D local features with depth information provided by RGB-D cameras are often used to improve such alignment. However, under varying lighting or low visual texture, indoor pairwise frame registration with sparse 2D local features is not a particularly robust method. In these conditions, features are hard to detect, thus leading to misalignment between consecutive pairs of frames. The use of 3D local features can be a solution as such features come from the 3D points themselves and are resistant to variations in visual texture and illumination. Because varying conditions in real indoor scenes are unavoidable, we propose a new framework to improve the pairwise frame alignment using an adaptive combination of sparse 2D and 3D features based on both the levels of geometric structure and visual texture contained in each scene. Experiments with datasets including unrestricted RGB-D camera motion and natural changes in illumination show that the proposed framework convincingly outperforms methods using 2D or 3D features separately, as reflected in better level of alignment accuracy. / O alinhamento entre pares de nuvens de pontos é uma tarefa importante na construção de mapas de ambientes em 3D. A combinação de características locais 2D com informação de profundidade fornecida por câmeras RGB-D são frequentemente utilizadas para melhorar tais alinhamentos. No entanto, em ambientes internos com baixa iluminação ou pouca textura visual o método usando somente características locais 2D não é particularmente robusto. Nessas condições, as características 2D são difíceis de serem detectadas, conduzindo a um desalinhamento entre pares de quadros consecutivos. A utilização de características 3D locais pode ser uma solução uma vez que tais características são extraídas diretamente de pontos 3D e são resistentes a variações na textura visual e na iluminação. Como situações de variações em cenas reais em ambientes internos são inevitáveis, essa tese apresenta um novo sistema desenvolvido com o objetivo de melhorar o alinhamento entre pares de quadros usando uma combinação adaptativa de características esparsas 2D e 3D. Tal combinação está baseada nos níveis de estrutura geométrica e de textura visual contidos em cada cena. Esse sistema foi testado com conjuntos de dados RGB-D, incluindo vídeos com movimentos irrestritos da câmera e mudanças naturais na iluminação. Os resultados experimentais mostram que a nossa proposta supera aqueles métodos que usam características 2D ou 3D separadamente, obtendo uma melhora da precisão no alinhamento de cenas em ambientes internos reais.
245

Estimation de l'attitude d'un satellite à l'aide de caméras pushbroom et de capteurs stellaires / How to estimate satellite attitude using pushbroom cameras and star trackers

Perrier, Régis 27 September 2011 (has links)
Les caméras pushbroom sont omniprésentes en imagerie satellitaire. Ce capteur linéaire enregistre des images 1-D et utilise le défilement du satellite autour de la terre pour construire des bandeaux d’image ; son principe de fonctionnement est identique aux scanners et photocopieurs que l’on peut utiliser tous les jours. Les avantages liés à cette technologie sont principalement une résolution d’image étendue qui va bien au delà des caméras perspectives, un coût d’exploitation faible et une robustesse au contexte spatial. Pour reconstruire des images couleur, le plan focal d’un satellite embarque plusieurs caméras pushbroom sensibles à différentes bandes spectrales de la lumière. Ce mode d’acquisition dépendant du temps suppose que l’orientation du satellite, également appelée attitude dans cette étude, ne varie pas au cours du survol d’une scène. Les satellites ont jusqu’à maintenant été considérés comme stables du fait de leur inertie. Cependant les technologies récentes développées dans la recherche spatiale tendent à réduire leur taille et alléger leur poids pour les rendre plus agiles et moins coûteux en énergie lors de leur mise en orbite. La résolution des capteurs a également été améliorée, ce qui rend nettement plus critique la moindre oscillation de l’imageur. Ces facteurs cumulés font qu’un changement d’attitude de quelques microradians peut provoquer des déformations géométriques notables dans les images. Les solutions actuelles utilisent les capteurs de positionnement du satellite pour asservir son attitude et rectifier les images, mais elles sont coûteuses et limitées en précision. Les images contiennent pourtant une information cohérente sur les mouvements du satellite de par leurs éventuelles déformations. Nous proposons dans cette étude de retrouver les variations d’attitude par recalage des images enregistrées par le satellite. Nous exploitons la disposition des caméras pushbroom dans le plan focal ainsi que la nature stationnaire des oscillations pour conduire l’estimation. Le tout est présenté dans un cadre bayesien, où les données images peuvent se mêler avec une information a priori sur le mouvement ainsi que des mesures exogènes fournies par un capteur stellaire couramment appelé star tracker. Différentes solutions sont décrites et comparées sur des jeux de données satellitaires fournis par le constructeur de satellite EADS Astrium. / Linear pushbroom cameras are widely used for earth observation applications. This sensor acquires 1-D images over time and uses the straight motion of the satellite to sweep out a region of space and build 2-D image ; it operates in the same way as a usual flatbed scanner. Main advantages of such technology are : robustness in the space context, higher resolution than classical 2-D CCD sensors and low production cost. To build color images, several pushbroom cameras of different modalities are set in parallel onto the satellite’s focal plane. This acquisition process is dependent of the time and assumes that the satellite’s attitude remains constant during the image recording. However, the recent manufacture of smal- ler satellites with higher sampling resolution has weakened this assumption. The satellite may oscillates around its rotations axis, and an angular variation of a few microradians can result in noticeable warps in images. Current solutions use inertial sensors on board the satellite to control the attitude and correct the images, but they are costly and of limited precision. As warped images do contain the information of attitude variations, we suggest to use image registration to es- timate them. We exploit the geometry of the focal plane and the stationary nature of the disturbances to recover undistorted images. To do so, we embed the estimation process in a Bayesian framework where image registration, prior on attitude variations and mea- surements of a star tracker are fused to retrieve the motion of the satellite. We illustrate the performance of our algorithm on four satellite datasets provided by EADS Astrium.
246

Detecção de regiões de massa por análise bilateral adaptada à densidade da mama utilizando índices de similaridade e redes neurais convolucionais / Detection of Mass Regions by Bilateral Analysis Adapted to Breast Density using Similarity and Convolutional Neural Networks

Diniz , João Otávio Bandeira 03 February 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-05-30T21:09:57Z No. of bitstreams: 1 JoaoDiniz.pdf: 2606559 bytes, checksum: 262a9c98db11667d3a482c378ab78b50 (MD5) / Made available in DSpace on 2017-05-30T21:09:57Z (GMT). No. of bitstreams: 1 JoaoDiniz.pdf: 2606559 bytes, checksum: 262a9c98db11667d3a482c378ab78b50 (MD5) Previous issue date: 2017-02-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Breast cancer is the type of cancer that most affects women and is one of the leading causes of death worldwide. Aiming to aid the detection and diagnosis of this pathology, several techniques in the image area are being created serving as a second opinion. It is known that mammograms of the left and right breast present a high degree of symmetry, and when there is a sudden difference between the pairs, it can be considered suspicious. It is also emphasized that the breast can present different density of the tissue and this can be a factor that makes difficult the detection and diagnosis of the lesions. Thus, the objective of this work is to develop an automatic methodology for the detection of mass regions in pairs of digitized mammograms adapted to breast density, using image processing and species comparison techniques to determine asymmetric regions in the breasts together with neural convolutional networks for Classification of breast density and regions in masses and not masses. The proposed methodology is divided into two phases: training phase and test phase. In the training phase will be created three models using convolutional neural networks, the first able to classify the breast as density and the last two to classify regions of mass and non-mass in dense and non-dense breasts.The steps are in aligning the breasts so that it is possible to make a comparison between the pairs. When comparing, asymmetric regions will be segmented, these regions will undergo a process of reduction of false positives in order to eliminate regions that are not masses. Before classifying the remaining regions, the breasts undergo the process of density classification by the model obtained in the training phase. Finally, for each type of breast, a model will classify the regions segmented into masses and not masses. The methodology presented excellent results, in the non-dense breasts reaching sensitivity of 91.56 %, specificity of 90.73 %, accuracy of 91.04 % and rate of 0.058 false positives per image. Dense breasts showed 90.36 % sensitivity, 96.35 % specificity, 94.84 % accuracy and 0.027 false positives per image. The results show that the methodology is promising and can be used to compose a CAD system, serving as a second option for the expert in the task of detecting mass regions. / O cãncer de mama é o tipo de câncer que mais acomete as mulheres e uma das principais causas de morte em todo o mundo. Visando auxiliar a detecção e diagnóstico desta patologia, diversas técnicas na érea de imagem estão sendo criadas servindo como um auxílio ao especialista. Sabe-se que mamografias esquerda e direita apresentam alto grau simetria, e quanto há uma diferença brusca entre os pares, pode-se considerar algo de suspeito. Ressalta-se também que a mama pode apresentar densidade diferente do tecido e isso pode ser um fator que dificulte na detecção e diagnóstico das lesões. Assim, o objetivo deste trabalho é desenvolver uma metodologia automática de detecção de regiões de massa em pares de mamografias digitalizadas adaptada à densidade da mama, utilizando técnicas de processamento de imagens e comparação de espécies para determinar regiões assimétricas nas mamas juntamente com redes neurais convolucionais para classificação de densidade da mama e de regiões em massas e não massas. A metodologia proposta é dividida em duas fases: fase de treinamento e fase de teste. Na fase de treinamento serão criados três modelos utilizando redes neurais convolucionais, o primeiro capaz de classificar a mama quanto a densidade e os dois últimos classificam regiões de massa e não massa em mamas densas e não densas. Na fase de teste, imagens de mamografia da base DDSM passarão por várias etapas a fim de segmentar regiões assimétricas que serão posteriormente classificadas. As etapas resumem-se em alinhar as mamas para que seja possível fazer uma comparação entre os pares. Ao comparar, serão segmentadas regiões assimétricas, essas regiões passarão por processo de redução de falsos positivos a fim de eliminar regiões que não são massas. Antes de classificar as regiões restantes, as mamas passam pelo processo de classificação de densidade pelo modelo obtido na fase de treinamento. Por fim, para cada tipo de mama, um modelo irá classificar as regiões segmentadas em massas e não massas. O método proposto apresentou resultados promissores, nas mamas não densas atingiu sensibilidade de 91,56%, especificidade de 90,73%, 91,04% de acurácia e taxa de 0,058 falsos positivos por imagem. As mamas densas, apresentaram resultados de 90,36% de sensibilidade, 96,35% de especificidade, 94,84% de acurácia e 0,027 falsos positivos por imagem. Os resultados mostram que a metodologia é promissora e pode ser utilizada para compor um sistema CAD na tarefa de detectar regiões de massas.
247

Image registration and super-resolution mosaicing

Ye, Getian, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
This thesis presents new approaches to image registration and super-resolution mosaicing as well as their applications. Firstly, a feature-based image registration method is proposed for a multisensor surveillance system that consists of an optical camera and an infrared camera. By integrating a non-rigid object tracking technique into this method, a novel approach to simultaneous object tracking and multisensor image registration is proposed. Based on the registration and fusion of multisensor information, automatic face detection is greatly improved. Secondly, some extensions of a gradient-based image registration method, called inverse compositional algorithm, are proposed. These extensions include cumulative multi-image registration and the incorporation of illumination change and lens distortion correction. They are incorporated into the framework of the original algorithm in a consistent manner and efficiency can still be achieved for multi-image registration with illumination and lens distortion correction. Thirdly, new super-resolution mosaicing algorithms are proposed for multiple uncompressed and compressed images. Considering the process of image formation, observation models are introduced to describe the relationship between the superresolution mosaic image and the uncompressed and compressed low-resolution images. To improve the performance of super-resolution mosaicing, a wavelet-based image interpolation technique and an approach to adaptive determination of the regularization parameter are presented. For compressed images, a spatial-domain algorithm and a transform-domain algorithm are proposed. All the proposed superresolution mosaicing algorithms are robust against outliers. They can produce superresolution mosaics and reconstructed super-resolution images with improved subjective quality. Finally, new techniques for super-resolution sprite generation and super-resolution sprite coding are proposed. Considering both short-term and long-term motion influences, an object-based image registration method is proposed for handling long image sequences. In order to remove the influence of outliers, a robust technique for super-resolution sprite generation is presented. This technique produces sprite images and reconstructed super-resolution images with high visual quality. Moreover, it provides better reconstructed low-resolution images compared with low-resolution sprite generation techniques. Due to the advantages of the super-resolution sprite, a super-resolution sprite coding technique is also proposed. It achieves high coding efficiency especially at a low bit-rate and produces both decoded low-resolution and super-resolution images with improved subjective quality. Throughout this work, the performance of all the proposed algorithms is evaluated using both synthetic and real image sequences.
248

Finite Element and Neuroimaging Techniques toImprove Decision-Making in Clinical Neuroscience

Li, Xiaogai January 2012 (has links)
Our brain, perhaps the most sophisticated and mysterious part of the human body, to some extent, determines who we are. However, it’s a vulnerable organ. When subjected to an impact, such as a traffic accident or sport, it may lead to traumatic brain injury (TBI) which can have devastating effects for those who suffer the injury. Despite lots of efforts have been put into primary injury prevention, the number of TBIs is still on an unacceptable high level in a global perspective. Brain edema is a major neurological complication of moderate and severe TBI, which consists of an abnormal accumulation of fluid within the brain parenchyma. Clinically, local and minor edema may be treated conservatively only by observation, where the treatment of choice usually follows evidence-based practice. In the first study, the gravitational force is suggested to have a significant impact on the pressure of the edema zone in the brain tissue. Thus, the objective of the study was to investigate the significance of head position on edema at the posterior part of the brain using a Finite Element (FE) model. The model revealed that water content (WC) increment at the edema zone remained nearly identical for both supine and prone positions. However, the interstitial fluid pressure (IFP) inside the edema zone decreased around 15% by having the head in a prone position compared with a supine position. The decrease of IFP inside the edema zone by changing patient position from supine to prone has the potential to alleviate the damage to axonal fibers of the central nervous system. These observations suggest that considering the patient’s head position during intensive care and at rehabilitation should be of importance to the treatment of edematous regions in TBI patients. In TBI patients with diffuse brain edema, for most severe cases with refractory intracranial hypertension, decompressive craniotomy (DC) is performed as an ultimate therapy. However, a complete consensus on its effectiveness has not been achieved due to the high levels of severe disability and persistent vegetative state found in the patients treated with DC. DC allows expansion of the swollen brain outside the skull, thereby having the potential in reducing the Intracranial Pressure (ICP). However, the treatment causes stretching of the axons and may contribute to the unfavorable outcome of the patients. The second study aimed at quantifying the stretching and WC in the brain tissue due to the neurosurgical intervention to provide more insight into the effects upon such a treatment. A nonlinear registration method was used to quantify the strain. Our analysis showed a substantial increase of the strain level in the brain tissue close to the treated side of DC compared to before the treatment. Also, the WC was related to specific gravity (SG), which in turn was related to the Hounsfield unit (HU) value in the Computerized Tomography (CT) images by a photoelectric correction according to the chemical composition of the brain tissue. The overall WC of brain tissue presented a significant increase after the treatment compared to the condition seen before the treatment. It is suggested that a quantitative model, which characterizes the stretching and WC of the brain tissue both before as well as after DC, may clarify some of the potential problems with such a treatment. Diffusion Weighted (DW) Imaging technology provides a noninvasive way to extract axonal fiber tracts in the brain. The aim of the third study, as an extension to the second study was to assess and quantify the axonal deformation (i.e. stretching and shearing)at both the pre- and post-craniotomy periods in order to provide more insight into the mechanical effects on the axonal fibers due to DC. Subarachnoid injection of artificial cerebrospinal fluid (CSF) into the CSF system is widely used in neurological practice to gain information on CSF dynamics. Mathematical models are important for a better understanding of the underlying mechanisms. Despite the critical importance of the parameters for accurate modeling, there is a substantial variation in the poroelastic constants used in the literature due to the difficulties in determining material properties of brain tissue. In the fourth study, we developed a Finite Element (FE) model including the whole brain-CSF-skull system to study the CSF dynamics during constant-rate infusion. We investigated the capacity of the current model to predict the steady state of the mean ICP. For transient analysis, rather than accurately fit the infusion curve to the experimental data, we placed more emphasis on studying the influences of each of the poroelastic parameters due to the aforementioned inconsistency in the poroelastic constants for brain tissue. It was found that the value of the specific storage term S_epsilon is the dominant factor that influences the infusion curve, and the drained Young’s modulus E was identified as the dominant parameter second to S_epsilon. Based on the simulated infusion curves from the FE model, Artificial Neural Network (ANN) was used to find an optimized parameter set that best fit the experimental curve. The infusion curves from both the FE simulations and using ANN confirmed the limitation of linear poroelasticity in modeling the transient constant-rate infusion. To summarize, the work done in this thesis is to introduce FE Modeling and imaging technologiesincluding CT, DW imaging, and image registration method as a complementarytechnique for clinical diagnosis and treatment of TBI patients. Hopefully, the result mayto some extent improve the understanding of these clinical problems and improve theirmedical treatments. / QC 20120201
249

Contrast-enhanced magnetic resonance liver image registration, segmentation, and feature analysis for liver disease diagnosis

Oh, Ji Hun 13 November 2012 (has links)
The global objectives of this research are to develop a liver-specific magnetic resonance (MR) image registration and segmentation algorithms and to find highly correlated MR imaging features that help automatically score the severity of chronic liver disease (CLD). For a concise analysis of liver disease, time sequences of 3-D MR images should be preprocessed through an image registration to compensate for the patient motion, respiration, or tissue motion. To register contrast-enhanced MR image volume sequences, we propose a novel version of the demons algorithm that is based on a bi-directional local correlation coefficient (Bi-LCC) scheme. This scheme improves the speed at which a convergent sequence approaches to the optimum state and achieves the higher accuracy. Furthermore, the simple and parallelizable hierarchy of the Bi-LCC demons can be implemented on a graphics processing unit (GPU) using OpenCL. To automate segmentation of the liver parenchyma regions, an edge function-scaled region-based active contour (ESRAC), which hybridizes gradient and regional statistical information, with approximate partitions of the liver was proposed. Next, a significant purpose in grading liver disease is to assess the level of remaining liver function and to estimate regional liver function. On motion-corrected and segmented liver parenchyma regions, for quantitative analysis of the hepatic extraction of liver-specific MRI contrast agent, liver signal intensity change is evaluated from hepatobiliary phases (3-20 minutes), and parenchymal texture features are deduced from the equilibrium (3 minutes) phase. To build a classifier using texture features, a set of training input and output values, which is estimated by experts as a score of malignancy, trains the supervised learning algorithm using a multivariate normal distribution model and a maximum a posterior (MAP) decision rule. We validate the classifier by assessing the prediction accuracy with a set of testing data.
250

Fpga Implementation Of Real Time Digital Video Superresolution For Infrared Cameras

Aktukmak, Mehmet 01 January 2013 (has links) (PDF)
At present, the quality of image taken from infrared cameras is low compared to the other cameras because of manufacturing technology. So, resolution enhancement processes are becoming more important for these cameras. Super resolution is a good approach to solve this resolution problem. In general, the systems that infrared cameras used require video processing to perform in real time. So, a suitable approach should be selected and implemented to work in real time. The computational load and processing time are big issues in this case. FPGAs are proven to be suitable hardware devices for these types of works. Super resolution involves two parts as global motion estimation and high resolution image reconstruction. In this study, one suitable algorithm, namely as PM, for global motion estimation in the literature is selected to be implemented in real time. On the other hand, for high resolution image reconstruction part, FPGA structures of some well known algorithms in the literature, namely as POCS, MLE, MAP and LMS are proposed and their performance, resource requirements and timing considerations are discussed. Most efficient one is selected and implemented in FPGA.

Page generated in 0.0935 seconds