• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 11
  • 7
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 79
  • 16
  • 16
  • 16
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and development of mechanical passive millimetre wave imaging scanning systems

Papakosta, Paraskevi January 1999 (has links)
No description available.
2

2d dose measurement using a flat panel EPID

Lim, Seng Boh 11 1900 (has links)
The increasing use of intensity modulated radiation therapy (IMRT) to deliver conformal radiation treatment has prompted the search for a faster and more cost effective quality assurance (QA) system. The standard technique relies on the use of film for two-dimensional dose distribution verification. Although film is considered the gold standard and is widely used for this purpose, the procedures involved are relatively lengthy, labour intensive and costly for a multiple field IMRT verification. In this study, we investigate the use of an amorphous silicon electronic portal imaging device (a-Si EPID) to complement the film. The dosimetric behaviour of the device is studied both experimentally and numerically using the EGSnrc Monte Carlo simulation routine. The intrinsic build-up of the flat panel EPID was found to be 1.1 cm of water equivalent material. The response of the flat panel EPID was found to be linear between 0 and 300 cGy. To calibrate the flat panel EPID for two dimensional dose measurements, the deconvolution method was chosen. The scatter dose kernel required for this calibration method was calculated and characterized by varying the energy, spectrum and phantom material using a 6MV pencil beam. We found that flat panel EPID scatter kernel has as much as 80% more scattering power than the water scatter kernel in the region 1 cm away from the center of a 6MV pencil beam. This confirms that a flat panel EPID behaves significantly differently from water dosimetrically and requires an accurate dose scatter kernel for calibration. A 1.0 cm wide picket fence test pattern was used to test the accuracy of the kernel. Using the deconvolution method with the calculated dose kernels, the measurements from the flat panel EPID show improved agreement with the films.
3

2d dose measurement using a flat panel EPID

Lim, Seng Boh 11 1900 (has links)
The increasing use of intensity modulated radiation therapy (IMRT) to deliver conformal radiation treatment has prompted the search for a faster and more cost effective quality assurance (QA) system. The standard technique relies on the use of film for two-dimensional dose distribution verification. Although film is considered the gold standard and is widely used for this purpose, the procedures involved are relatively lengthy, labour intensive and costly for a multiple field IMRT verification. In this study, we investigate the use of an amorphous silicon electronic portal imaging device (a-Si EPID) to complement the film. The dosimetric behaviour of the device is studied both experimentally and numerically using the EGSnrc Monte Carlo simulation routine. The intrinsic build-up of the flat panel EPID was found to be 1.1 cm of water equivalent material. The response of the flat panel EPID was found to be linear between 0 and 300 cGy. To calibrate the flat panel EPID for two dimensional dose measurements, the deconvolution method was chosen. The scatter dose kernel required for this calibration method was calculated and characterized by varying the energy, spectrum and phantom material using a 6MV pencil beam. We found that flat panel EPID scatter kernel has as much as 80% more scattering power than the water scatter kernel in the region 1 cm away from the center of a 6MV pencil beam. This confirms that a flat panel EPID behaves significantly differently from water dosimetrically and requires an accurate dose scatter kernel for calibration. A 1.0 cm wide picket fence test pattern was used to test the accuracy of the kernel. Using the deconvolution method with the calculated dose kernels, the measurements from the flat panel EPID show improved agreement with the films.
4

2d dose measurement using a flat panel EPID

Lim, Seng Boh 11 1900 (has links)
The increasing use of intensity modulated radiation therapy (IMRT) to deliver conformal radiation treatment has prompted the search for a faster and more cost effective quality assurance (QA) system. The standard technique relies on the use of film for two-dimensional dose distribution verification. Although film is considered the gold standard and is widely used for this purpose, the procedures involved are relatively lengthy, labour intensive and costly for a multiple field IMRT verification. In this study, we investigate the use of an amorphous silicon electronic portal imaging device (a-Si EPID) to complement the film. The dosimetric behaviour of the device is studied both experimentally and numerically using the EGSnrc Monte Carlo simulation routine. The intrinsic build-up of the flat panel EPID was found to be 1.1 cm of water equivalent material. The response of the flat panel EPID was found to be linear between 0 and 300 cGy. To calibrate the flat panel EPID for two dimensional dose measurements, the deconvolution method was chosen. The scatter dose kernel required for this calibration method was calculated and characterized by varying the energy, spectrum and phantom material using a 6MV pencil beam. We found that flat panel EPID scatter kernel has as much as 80% more scattering power than the water scatter kernel in the region 1 cm away from the center of a 6MV pencil beam. This confirms that a flat panel EPID behaves significantly differently from water dosimetrically and requires an accurate dose scatter kernel for calibration. A 1.0 cm wide picket fence test pattern was used to test the accuracy of the kernel. Using the deconvolution method with the calculated dose kernels, the measurements from the flat panel EPID show improved agreement with the films. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
5

Snow monitoring in the UK using a microwave emission model

Butt, Mohsin Jamil January 2001 (has links)
No description available.
6

Monte-Carlo simulation of the background noise in gamma-ray satellites

Perfect, Charlotte Lucy January 2002 (has links)
No description available.
7

Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C)

Dunlop, Matthew, Poon, Phillip 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / The AFSSI-C is a spectral imager that generates spectral classification directly, in fewer measurements than are required by traditional systems that measure the spectral datacube (which is later interpreted to make material classification). By utilizing adaptive features to constantly update conditional probabilities for the different hypotheses, the AFSSI-C avoids the overhead of directly measuring every element in the spectral datacube. The system architecture, feature design methodology, simulation results, and preliminary experimental results are given.
8

SYSTEM ARCHITECTURE FOR A DATA-INTEGRATED IMAGER

HICKEY, DOUGLAS R. 02 July 2007 (has links)
No description available.
9

Remote Imaging System Acquisition (RISA) Space Environment Multispectral Imager

Lizarrage, Adrian, Lynn, Brittany, Lange, Jeremiah 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / The purpose of the NASA Remote Imaging System Acquisition space camera prototype is to integrate multiple optical instruments into a small wireless system using radiation tolerant components. This stage of prototyping was the development of a broadband variable-focus camera that can transmit data wirelessly. A liquid lens in conjunction with a cerium doped double gauss eliminates traditional focusing mechanisms.
10

Remote Imaging System Acquisition Multispectral Imager

Choate, Laura, Lundstrom, Kevin, Pounds, Kevin, Richards, Garrett, Vinal, Eli 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The National Aeronautics and Space Administration's (NASA) Remote Imaging System Acquisition (RISA) camera will integrate the functionalities of existing space cameras. The system operates between 350nm and 1050nm wavelengths, with a MATLAB user interface, uses a CS-mount standard with a CMOS detector, and has a fixed focal plane. The implementation of a liquid lens uses electrical focus adjustments to image from infinity down to one foot. This will allow wireless operation and reduces mechanical failure. All images and video captured will be transmitted wirelessly to a MATLAB program. This data is then processed and stored, allowing for remote imaging.

Page generated in 0.0992 seconds