• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 34
  • 10
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 108
  • 108
  • 51
  • 50
  • 32
  • 25
  • 24
  • 22
  • 20
  • 18
  • 17
  • 17
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NONLINEAR DYNAMICS OF CABLE GALLOPING VIA A TWO-DEGREE-OF-FREEDOM NONLINEAR OSCILLATOR

YU, BO 01 August 2016 (has links)
The galloping vibrations of a single transmission cable that may vibrate transversely and torsionally has been investigated via a two-degree-of-freedom oscillator. The analytical solutions of periodic motions for this two-degree-of-freedom system are represented by the finite Fourier series. The analytical bifurcation trees of periodic motions to chaos of a transmission line under both steady and unsteady flows are discussed from the generalized harmonic balance method. The analytical solutions for stable and unstable periodic motions in such a two degree-of-freedom system are achieved, and the corresponding stability and bifurcation was discussed. The limit cycle for the linear cable structure are obtained by gradually decreasing the sinusoidal excitation amplitude. In addition, the numerical simulations of stable and unstable periodic motions are illustrated. The rich dynamical behavior in such a nonlinear cable structure are discovered, and this investigation may help one better understand the galloping phenomena for any elastic structures.
2

Experimental and Numerical Analysis of Combined In-line and Cross-flow Vortex Induced Vibration

Yin, Decao January 2013 (has links)
This thesis presents results from experimental and numerical investigations of the hydrodynamic forces on a rigid cylinder moving with prescribed orbits in uniform flow. The hydrodynamic forces are measured in both in-line (IL) and cross- ow (CF) directions. The measurements are processed to nd excitation and added mass coeffcients at discrete frequencies. The numerical simulations are used to illustrate the vortex shedding modes and are compared with the experimental results. The hydrodynamic coeffcients obtained from the harmonic forced motion experiments of a rigid cylinder do not always represent forces on a cross section of a exible beam. The orbits used in the forced motion experiments are therefore extracted from the measured motions of cross sections of a exible pipe under uniform and shear flows. Both periodic and observed orbits within a time window are applied as prescribed motions. Higher order displacement components are present in such orbits. IL response amplitudes from combined IL and CF response are larger than pure IL response amplitudes. The hydrodynamic coefficients obtained from the periodic experiments are often larger than those obtained from the pure IL tests. Higher order displacement components are more common in the IL direction than in the CF direction, and higher order IL displacement components will cause larger hydrodynamic forces in both directions. The hydrodynamic coefficients obtained from periodic motion tests are adequate for representing quasi-periodic observed motions. For chaotic observed motions, periodic orbits will yield hydrodynamic coefficients with larger uncertainties. Results from numerical analyses using large eddy simulation (LES) indicate that this method can be used to identify vortex shedding patterns and predict hydrodynamic forces under certain Re numbers and orbits.
3

Flow-Induced Vibration of Small Cylinders in the Shear Flow of a 2D Jet

Hsin, Antai 13 August 2004 (has links)
Flow-induced vibration of small elastic cylinders mounted in the shear flow of a two-dimensional jet is investigated experimentally. There has been a great deal of work concerned with different vibrating conditions and practical dynamic responses by way of mass ratios and diameters of various different cylinders. In such cases, the amplitude of the cylinder oscillation changed along with the variation of the jet velocity is due to the influence of fluid elastic instability. The experiment is based on the method of the magnetic field induction to measure the motion of the small cylinder, and it involves measurements of the varying velocity in a jet through the hot- wire anemometer. The critical velocity of the cylinder vibration in the shear flow with different diameters, mass ratios and damping factors are examined. Moreover, the oscillation traces of the cylinder by fluid elastic instability were observed when the jet velocity was increased, and then decreased for examination of hysteresis phenomena. The results show that the bifurcation of the cylinder vibration traces is remarkable especially for cylinders with high mass ratios. By the amplitude diagrams of the cylinder vibration, the critical velocity for onset of fluid elastic vibration was determined. The dependence of the critical velocity and hysteresis phenomena on the mass ratio and damping factor are discussed.
4

Vibrations of small cylinder in jet flow

Yu, Che-Ming 08 July 2000 (has links)
Vibrations of small cylinder in a jet flow are investigated experimentally. Because of the flow field in shear layers of jet flow is very complex and filled with vortex structures, so the flow induced vibration phenomena in jet flow is different from the flow induced vibration in uniform flow. The major subject in this experiment is to discuss the major cause of small cylinder vibrations, and the flow field influenced by the cylinder vibration. About flow measurement, velocity measurement by hot-wire is applied. As for the vibration measurement, by using the principle of electromagnetic, a new measurement technology was successfully developed. This new vibration measurement can measure the vibrations in two axial, so as to describe the orbit of vibrations. To find the interrelation of flow field and cylinder vibrations, flow measurement and vibration measurement was carry on at the same time. It is shown that when the jet velocity is increased constantly, small cylinder will vibration intensely. The fixed velocity is called critical velocity. If add a perturb, the vibration will occur in advance. The dominant frequency of cylinder vibration, fr, will be the same with it's nature frequency, fn, in the critical velocity, but when the flow velocity keep on increasing, the dominant frequency, fr, will also increase. Besides, the relation of reduced velocity and mass damping was found in this case. The orbits of vibrations are all like ellipse, and the orbit is different with different reduced velocity. The vibration amplitude be changed into three sections that have different reduced velocity, and different orbit. About the flow field, the velocity profile in potential core is not influenced by vibrations of small cylinder, but the velocity fluctuations in shear layer indeed be inflected. At the fixed velocity region, the dominant frequency of flow is the same with dominant frequency of vibrations when the flow at downstream of small cylinder in shear layer. This phenomena only exist when the vibration amplitude under the fixed range.
5

Analysis of vibration of tube bundles in cross-flow

Chiang, Chih-Hsiang 08 July 2000 (has links)
Abstract The experiment was performed to measure the flow-induced vibration of tubes in cross flow and to study the effect of different experimental parameters, natural frequency, tube patterns and positions of the missing tube, on the tube vibration. The vibration mode of structures was investigated by root-mean-square values of tube displacements, dominant response frequencies, power spectral densities and orbits. The vibration signals in various velocities were used to analyze the mode and mechanism of the tube vibration by examining the interrelations between power spectral densities and orbits of the tube vibration. It was found that the stability thresholds were higher at the higher natural frequencies of the tubes and approach angles of the flow. Missing tube would affect the stability of local flow field, so that the surrounding tubes became more unstable. For each array pattern, the dominant response frequency of tube was changed with the flow velocity. It should be associated with the flow field, the mode and mechanism of vibration. As the tube frequency jumped, it should be the change of vibrating mode and mechanism. From the spectra and orbits of the tube vibrations, it can be found that the dominant frequencies are more complex at the high flow velocity.
6

Analysis of flow around a flexible tube array in cross flow

LIN, SHIN-LI 24 July 2000 (has links)
Flow induced vibration of flow around a flexible tube array in cross flow are investigated experimentally. The different parameter including velocity, turbulent intensity, and nature frequency of tube. The flow structure and stability between flow and tube are analyzed by flow visualization and flow measurement. Further more, missing tube to find the change of the flow and the influenced of nearby tube, to get the way decreasing the vibration of tube.
7

none

Chen, Kuei-Hsiung 30 July 2001 (has links)
none
8

Tool wear detection and self-induced vibrations control in turning operations

Orozco Mendoza, Horacio. January 2002 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
9

An investigation of computer control of chatter in machining

Subramanian, Tirukonda Lankaram, January 1973 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1973. / Typescript. Vita. Description based on print version record. Includes bibliographical references (leaves 118-120).
10

FLOW-INDUCED VIBRATION OF CARBON NANOTUBES

Slisik, Jeffrey A. 05 October 2006 (has links)
No description available.

Page generated in 0.1146 seconds