• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 856
  • 403
  • 113
  • 89
  • 24
  • 19
  • 13
  • 10
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1886
  • 660
  • 330
  • 234
  • 220
  • 216
  • 212
  • 212
  • 208
  • 204
  • 189
  • 182
  • 169
  • 150
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Security and privacy model for association databases

Kong, Yibing Unknown Date (has links)
With the rapid development of information technology, data availability is improved greatly. Data may be accessed at anytime by people from any location. However,threats to data security and privacy arise as one of the major problems of the development of information systems, especially those information systems which contain personal information. An association database is a personal information system which contains associations between persons. In this thesis, we identify the security and privacy problems of association databases. In order to solve these problems, we propose a new security and privacy model for association databases equipped with both direct access control and inference control mechanisms. In this model, there are multiple criteria including, not only confidentiality, but also privacy and other aspects of security to classify the association. The methods used in the system are: The direct access control method is based on the mandatory model; The inference control method is based on both logic reasoning and probabilistic reasoning (Belief Networks). My contributions to security and privacy model for association databases and to inference control in the model include: Identification of security and privacy problems in association databases; Formal definition of association database model; Representation association databases as directed multiple graphs; Development of axioms for direct access control; Specification of the unauthorized inference problem; A method for unauthorized inference detection and control that includes: Development of logic inference rules and probabilistic inference rule; Application of belief networks as a tool for unauthorized inference detection and control.
192

Security and privacy model for association databases

Kong, Yibing Unknown Date (has links)
With the rapid development of information technology, data availability is improved greatly. Data may be accessed at anytime by people from any location. However,threats to data security and privacy arise as one of the major problems of the development of information systems, especially those information systems which contain personal information. An association database is a personal information system which contains associations between persons. In this thesis, we identify the security and privacy problems of association databases. In order to solve these problems, we propose a new security and privacy model for association databases equipped with both direct access control and inference control mechanisms. In this model, there are multiple criteria including, not only confidentiality, but also privacy and other aspects of security to classify the association. The methods used in the system are: The direct access control method is based on the mandatory model; The inference control method is based on both logic reasoning and probabilistic reasoning (Belief Networks). My contributions to security and privacy model for association databases and to inference control in the model include: Identification of security and privacy problems in association databases; Formal definition of association database model; Representation association databases as directed multiple graphs; Development of axioms for direct access control; Specification of the unauthorized inference problem; A method for unauthorized inference detection and control that includes: Development of logic inference rules and probabilistic inference rule; Application of belief networks as a tool for unauthorized inference detection and control.
193

Métodos atuariais aplicados à determinação da taxa de prêmio de contratos de seguro agrícola: um estudo de caso. / Actuarial methods applied to the determination of the premium rate of crop insurance contracts: a case study.

Ozaki, Vitor Augusto 19 April 2005 (has links)
O presente trabalho tem como principal objetivo, propor e testar métodos alternativos de precificação de contratos de seguro agrícola, baseados em um indicador de produtividade regional. A taxa de prêmio é calculada utilizando a abordagem nãoparamétrica de estimação da densidade da produtividade agrícola, a abordagem paramétrica utilizando as distribuições Normal e Beta e modelos hierárquicos Bayesianos. Na recuperação do processo gerador destes dados, são considerados os efeitos temporal, espacial e espaço-temporal visando a predição e a precificação de um contrato de seguro agrícola regional. Os dois primeiros métodos são aplicados a um conjunto de dados de produtividade municipal do Instituto Brasileiro de Geografia e Estatística (IBGE), no período de 1990 a 2002, para as culturas da soja, milho e trigo, no Estado do Paraná. Na análise empírica do modelo Bayesiano, são utilizados dados de produtividade municipal de milho, no Estado do Paraná, nos anos de 1990 a 2002. A escolha do melhor modelo dentre os modelos não-aninhados ajustados, é baseado no critério da preditiva a posteriori. As metodologias utilizadas nesta pesquisa incorporam melhorias no cálculo atuarial da taxa de prêmio, tendo em vista o pequeno número de observações de produtividade agrícola existentes. Além de propor novas metodologias, estudou-se a viabilidade de implantar um esquema de seguro agrícola regional na região de Castro, no Estado do Paraná, levando em conta a quantificação e redução do risco sistêmico proveniente da aquisição do seguro e da correlação da produtividade individual e regional. Para melhor entendimento dos diversos aspectos do problema, é feito um amplo levantamento histórico e principais tendências do seguro agrícola no Brasil e nos EUA, ressaltando os aspectos legal, institucional e operacional. O estudo mostrou que se o seguro regional de produtividade for oferecido na região de Castro, os produtores se beneficiariam devido à redução do risco proveniente do seguro e também devido ao prêmio relativamente menor do que aquele cobrado pelas seguradoras para os mesmos municípios estudados. / This research analyses alternative methods of pricing agricultural insurance contract based on regional yields. The premium rate is calculated using three different approaches: nonparametric method to estimate the density of the agricultural yield; parametric approach fitting the Normal and Beta distributions; and, hierarchical Bayesian models. The data generating process is recovered considering the temporal, spatial and spatio-temporal aspects to make predictions and pricing for area-yield insurance contract. The data used are county yields, collected by the Brazilian Institute of Geography and Statistics (IBGE), 1990 through 2002. The first two methods were applied to soybean, corn and wheat in the State of Paraná. In the Bayesian model, the empirical analysis limited to corn, in the State of the Paraná, from 1990 through 2002. The choice of the best model among the several non-nested models tested was based on the posterior predictive criteria. The methods proposed in this research intend to improve the actuarial calculation of the premium rate, taking into account the small size of data regarding agricultural yields. Besides proposing different methodologies, a case study of the viability was carried out. The possibility of implementation of an are-yield agricultural insurance was studied in the region of Castro, in the State of the Paraná. This case study considers the quantification and reduction of the systemic risk and also the correlation of the individual and regional yield. To better understand the problem involving the agricultural insurance, a broad historical review of literature was made in Brazil and U.S.A., considering its legal, institutional and operational aspects. The study shows that if a regional yield insurance contract is offered in the Castro region, producers would benefit from exposure to lower risk levels and also a relatively smaller premium rate than the rates charged by insurance companies in the same region.
194

Métodos atuariais aplicados à determinação da taxa de prêmio de contratos de seguro agrícola: um estudo de caso. / Actuarial methods applied to the determination of the premium rate of crop insurance contracts: a case study.

Vitor Augusto Ozaki 19 April 2005 (has links)
O presente trabalho tem como principal objetivo, propor e testar métodos alternativos de precificação de contratos de seguro agrícola, baseados em um indicador de produtividade regional. A taxa de prêmio é calculada utilizando a abordagem nãoparamétrica de estimação da densidade da produtividade agrícola, a abordagem paramétrica utilizando as distribuições Normal e Beta e modelos hierárquicos Bayesianos. Na recuperação do processo gerador destes dados, são considerados os efeitos temporal, espacial e espaço-temporal visando a predição e a precificação de um contrato de seguro agrícola regional. Os dois primeiros métodos são aplicados a um conjunto de dados de produtividade municipal do Instituto Brasileiro de Geografia e Estatística (IBGE), no período de 1990 a 2002, para as culturas da soja, milho e trigo, no Estado do Paraná. Na análise empírica do modelo Bayesiano, são utilizados dados de produtividade municipal de milho, no Estado do Paraná, nos anos de 1990 a 2002. A escolha do melhor modelo dentre os modelos não-aninhados ajustados, é baseado no critério da preditiva a posteriori. As metodologias utilizadas nesta pesquisa incorporam melhorias no cálculo atuarial da taxa de prêmio, tendo em vista o pequeno número de observações de produtividade agrícola existentes. Além de propor novas metodologias, estudou-se a viabilidade de implantar um esquema de seguro agrícola regional na região de Castro, no Estado do Paraná, levando em conta a quantificação e redução do risco sistêmico proveniente da aquisição do seguro e da correlação da produtividade individual e regional. Para melhor entendimento dos diversos aspectos do problema, é feito um amplo levantamento histórico e principais tendências do seguro agrícola no Brasil e nos EUA, ressaltando os aspectos legal, institucional e operacional. O estudo mostrou que se o seguro regional de produtividade for oferecido na região de Castro, os produtores se beneficiariam devido à redução do risco proveniente do seguro e também devido ao prêmio relativamente menor do que aquele cobrado pelas seguradoras para os mesmos municípios estudados. / This research analyses alternative methods of pricing agricultural insurance contract based on regional yields. The premium rate is calculated using three different approaches: nonparametric method to estimate the density of the agricultural yield; parametric approach fitting the Normal and Beta distributions; and, hierarchical Bayesian models. The data generating process is recovered considering the temporal, spatial and spatio-temporal aspects to make predictions and pricing for area-yield insurance contract. The data used are county yields, collected by the Brazilian Institute of Geography and Statistics (IBGE), 1990 through 2002. The first two methods were applied to soybean, corn and wheat in the State of Paraná. In the Bayesian model, the empirical analysis limited to corn, in the State of the Paraná, from 1990 through 2002. The choice of the best model among the several non-nested models tested was based on the posterior predictive criteria. The methods proposed in this research intend to improve the actuarial calculation of the premium rate, taking into account the small size of data regarding agricultural yields. Besides proposing different methodologies, a case study of the viability was carried out. The possibility of implementation of an are-yield agricultural insurance was studied in the region of Castro, in the State of the Paraná. This case study considers the quantification and reduction of the systemic risk and also the correlation of the individual and regional yield. To better understand the problem involving the agricultural insurance, a broad historical review of literature was made in Brazil and U.S.A., considering its legal, institutional and operational aspects. The study shows that if a regional yield insurance contract is offered in the Castro region, producers would benefit from exposure to lower risk levels and also a relatively smaller premium rate than the rates charged by insurance companies in the same region.
195

Modèles bayésiens d'inférence séquentielle chez l'humain / Bayesian models of human online inference

Prat-Carrabin, Arthur 28 November 2017 (has links)
Le paradigme bayésien s'est imposé comme une interprétation mathématique élégante du comportement humain dans des tâches d'inférence. Pourtant, il ne rend pas compte de la présence de sous-optimalité, de variabilité, et de biais systématiques chez les humains. De plus, le cerveau doit mettre à jour ses représentations du monde extérieur, au fil des informations qui lui parviennent, dans des environnements naturels qui changent au cours du temps, et présentent une structure temporelle. Nous étudions la question de l'inférence séquentielle à l'aide d'une expérience, dont les résultats montrent que les humains tirent parti, dans leur inférence, de la structure temporelle des signaux; et que la variabilité des réponses est elle-même fonction du processus d'inférence. Nous étudions 27 modèles sous-optimaux capturant des limitations cognitives à l'optimalité. La variabilité des réponses est reproduite par des modèles qui font une approximation, par échantillonnage durant l'inférence, du posterior, et par des modèles qui, dans leur réponse, échantillonnent le posterior, plutôt que de le maximiser. Les données expérimentales soutiennent plus fortement la première hypothèse, suggérant que le cerveau utilise quelques échantillons pour représenter, par approximation, le posterior bayésien. Enfin, nous étudions les "effets séquentiels", biais qui consistent à former des attentes erronées à propos d'un signal aléatoire. Nous supposons que les sujets infèrent les statistiques du signal, mais cette inférence est sujette à un coût cognitif, menant à des comportements non-triviaux. Considérés dans leur ensemble, nos résultats montrent, dans le cas naturel de l'inférence séquentielle, que des déviations du modèle bayésien optimal permettent de rendre compte de manière satisfaisante de la sous-optimalité, de la variabilité, et des biais systématiques constatés chez l'humain. / In past decades, the Bayesian paradigm has gained traction as an elegant and mathematically principled account of human behavior in inference tasks. Yet this success is tainted by the sub-optimality, variability, and systematic biases in human behavior. Besides, the brain must sequentially update its belief as new information is received, in natural environments that, usually, change over time and present a temporal structure. We investigate, with a task, the question of human online inference. Our data show that humans can make use of subtle aspects of temporal statistics in online inference; and that the magnitude of the variability found in responses itself depends on the inference. We investigate how a broad family of models, capturing deviations from optimality based on cognitive limitations, can account for human behavior. The variability in responses is reproduced by models approximating the posterior through random sampling during inference, and by models that select responses by sampling the posterior instead of maximizing it. Model fitting supports the former scenario and suggests that the brain approximates the Bayesian posterior using a small number of random samples. In a last part of our work, we turn to "sequential effects", biases in which human subjects form erroneous expectations about a random signal. We assume that subjects are inferring the statistics of the signal, but this inference is hindered by a cognitive cost, leading to non-trivial behaviors. Taken together, our results demonstrate, in the ecological case of online inference, how deviations from the Bayesian model, based on cognitive limitations, can account for sub-optimality, variability, and biases in human behavior.
196

Wissensrepräsentation und diagnostische Inferenz mittels Bayesscher Netze im medizinischen Diskursbereich

Flügge, Sebastian, Zimmer, Sandra, Petersohn, Uwe 22 August 2019 (has links)
Für die diagnostische Inferenz unter Unsicherheit werden Bayessche Netze untersucht. Grundlage dafür bildet eine adäquate einheitliche Repräsentation des notwendigen Wissens. Dies ist sowohl generisches als auch auf Erfahrungen beruhendes spezifisches Wissen, welches in einer Wissensbasis gespeichert wird. Zur Wissensverarbeitung wird eine Kombination der Problemlösungsmethoden des Concept Based und Case Based Reasoning eingesetzt. Concept Based Reasoning wird für die Diagnose-, Therapie- und Medikationsempfehlung und -evaluierung über generischesWissen eingesetzt. Sonderfälle in Form von spezifischen Patientenfällen werden durch das Case Based Reasoning verarbeitet. Darüber hinaus erlaubt der Einsatz von Bayesschen Netze den Umgang mit Unsicherheit, Unschärfe und Unvollständigkeit. Es können so die gültigen allgemeinen Konzepte nach derenWahrscheinlichkeit ausgegeben werden. Dazu werden verschiedene Inferenzmechanismen vorgestellt und anschließend im Rahmen der Entwicklung eines Prototypen evaluiert. Mit Hilfe von Tests wird die Klassifizierung von Diagnosen durch das Netz bewertet.:1 Einleitung 2 Repräsentation und Inferenz 3 Inferenzmechanismen 4 Prototypische Softwarearchitektur 5 Evaluation 6 Zusammenfassung
197

GENERAL-PURPOSE STATISTICAL INFERENCE WITH DIFFERENTIAL PRIVACY GUARANTEES

Zhanyu Wang (13893375) 06 December 2023 (has links)
<p dir="ltr">Differential privacy (DP) uses a probabilistic framework to measure the level of privacy protection of a mechanism that releases data analysis results to the public. Although DP is widely used by both government and industry, there is still a lack of research on statistical inference under DP guarantees. On the one hand, existing DP mechanisms mainly aim to extract dataset-level information instead of population-level information. On the other hand, DP mechanisms introduce calibrated noises into the released statistics, which often results in sampling distributions more complex and intractable than the non-private ones. This dissertation aims to provide general-purpose methods for statistical inference, such as confidence intervals (CIs) and hypothesis tests (HTs), that satisfy the DP guarantees. </p><p dir="ltr">In the first part of the dissertation, we examine a DP bootstrap procedure that releases multiple private bootstrap estimates to construct DP CIs. We present new DP guarantees for this procedure and propose to use deconvolution with DP bootstrap estimates to derive CIs for inference tasks such as population mean, logistic regression, and quantile regression. Our method achieves the nominal coverage level in both simulations and real-world experiments and offers the first approach to private inference for quantile regression.</p><p dir="ltr">In the second part of the dissertation, we propose to use the simulation-based ``repro sample'' approach to produce CIs and HTs based on DP statistics. Our methodology has finite-sample guarantees and can be applied to a wide variety of private inference problems. It appropriately accounts for biases introduced by DP mechanisms (such as by clamping) and improves over other state-of-the-art inference methods in terms of the coverage and type I error of the private inference. </p><p dir="ltr">In the third part of the dissertation, we design a debiased parametric bootstrap framework for DP statistical inference. We propose the adaptive indirect estimator, a novel simulation-based estimator that is consistent and corrects the clamping bias in the DP mechanisms. We also prove that our estimator has the optimal asymptotic variance among all well-behaved consistent estimators, and the parametric bootstrap results based on our estimator are consistent. Simulation studies show that our framework produces valid DP CIs and HTs in finite sample settings, and it is more efficient than other state-of-the-art methods.</p>
198

Semantic Validation of T&E XML Data

Moskal, Jakub, Kokar, Mieczyslaw, Morgan, John 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / It is anticipated that XML will heavily dominate the next generation of telemetry systems. The syntax of XML-based languages can be constrained by a schema that describes the structure of valid documents. However, the schemas cannot express all dependencies between XML elements and attributes, both within a single document and across multiple documents. This prohibits the XML validation process from being fully automated with standard schema processors. This paper presents an approach that is based on the W3C Semantic Web technologies and allows different vendors and system integrators to independently develop their own semantic validation rules. The rules are equipped with powerful semantics, which allows for specification and validation of complex types of constraints. The approach is not specific to a particular T&E standard and is entirely standards-based.
199

Factorial Hidden Markov Models for full and weakly supervised supertagging

Ramanujam, Srivatsan 2009 August 1900 (has links)
For many sequence prediction tasks in Natural Language Processing, modeling dependencies between individual predictions can be used to improve prediction accuracy of the sequence as a whole. Supertagging, involves assigning lexical entries to words based on lexicalized grammatical theory such as Combinatory Categorial Grammar (CCG). Previous work has used Bayesian HMMs to learn taggers for both POS tagging and supertagging separately. Modeling them jointly has the potential to produce more robust and accurate supertaggers trained with less supervision and thereby potentially help in the creation of useful models for new languages and domains. Factorial Hidden Markov Models (FHMM) support joint inference for multiple sequence prediction tasks. Here, I use them to jointly predict part-of-speech tag and supertag sequences with varying levels of supervision. I show that supervised training of FHMM models improves performance compared to standard HMMs, especially when labeled training material is scarce. Secondly, FHMMs trained from tag dictionaries rather than labeled examples also perform better than a standard HMM. Finally, I show that an FHMM and a maximum entropy Markov model can complement each other in a single step co-training setup that improves the performance of both models when there is limited labeled training material available. / text
200

Probabilistic Control: Implications For The Development Of Upper Limb Neuroprosthetics

Anderson, Chad January 2007 (has links)
Functional electrical stimulation (FES) involves artificial activation of paralyzed muscles via implanted electrodes. FES has been successfully used to improve the ability of tetraplegics to perform upper limb movements important for daily activities. The variety of movements that can be generated by FES is, however, limited to a few movements such as hand grasp and release. Ideally, a user of an FES system would have effortless command over all of the degrees of freedom associated with upper limb movement. One reason that a broader range of movements has not been implemented is because of the substantial challenge associated with identifying the patterns of muscle stimulation needed to elicit additional movements. The first part of this dissertation addresses this challenge by using a probabilistic algorithm to estimate the patterns of muscle activity associated with a wide range of upper limb movements.A neuroprosthetic involves the control of an external device via brain activity. Neuroprosthetics have been successfully used to improve the ability of tetraplegics to perform tasks important for interfacing with the world around them. The variety of mechanisms which they can control is, however, limited to a few devices such as special computer typing programs. Because motor areas of the cerebral cortex are known to represent and regulate voluntary arm movements it might be possible to sense this activity with electrodes and decipher this information in terms of a moment-by-moment representation of arm trajectory. Indeed, several methods for decoding neural activity have been described, but these approaches are encumbered by technical difficulties. The second part of this dissertation addresses this challenge by using similar probabilistic methods to extract arm trajectory information from electroencephalography (EEG) electrodes that are already chronically deployed and widely used in human subjects.Ultimately, the two approaches developed as part of this dissertation might serve as a flexible controller for interfacing brain activity with functional electrical stimulation systems to realize a brain-controlled upper-limb neuroprosthetic system capable of eliciting natural movements. Such a system would effectively bypass the injured region of the spinal cord and reanimate the arm, greatly increasing movement capability and independence in paralyzed individuals.

Page generated in 0.0484 seconds