• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 32
  • 6
  • Tagged with
  • 112
  • 112
  • 79
  • 20
  • 20
  • 19
  • 19
  • 17
  • 16
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Structure et dynamique de protéines intrinsèquement désordonnées : Caractérisation par une approche combinant dynamique moléculaire avancée et SAXS / Structure and dynamic of intrinsically disordered proteins : Characterization by an approach combining advanced molecular dynamics and small angle X­ray scattering (SAXS)

Chan Yao Chong, Maud 15 October 2019 (has links)
Le travail de thèse consistera à explorer et caractériser l'ensemble conformationnel de protéines intrinsèquement désordonnées (IDPs) en utilisant plusieurs techniques complémentaires, notamment des simulations avancées de dynamique moléculaire et la diffusion des rayons X aux petits angles (SAXS). Les IDPs sont des protéines possédant une ou plusieurs régions n'ayant pas de structures secondaires stables lorsqu'elles sont isolées, mais pouvant en adopter lors de leur association avec de multiples autres protéines. La question, à laquelle ce travail souhaite répondre dans le cas de trois IDPs, est de savoir si ces éléments de structures secondaires, formés à l'interfaces des complexes protéine-protéine, pré-existent de façon transitoire, ou non, à l'état non-lié des IDPs en solution. S'il est possible d'identifier et de caractériser ces éléments de reconnaissance moléculaire dans les IDPs isolées, alors les résultats de ce travail permettront de guider par la suite la détermination des structures de complexes protéiques impliquant des IDPs. / The PhD work will consist in exploring and characterizing the conformational ensemble of intrinsically disordered proteins (IDPs), by using several complementary methods, including enhanced molecular dynamics simulations and small angle X-ray scattering (SAXS). IDPs are proteins having one or several regions that lack stable secondary structures in the unbound state, but which can adopt various structured conformations to bind other proteins. In the case of three IDPs, the project aims to answer the question of whether these secondary structures formed at the protein-protein interfaces transiently pre-exist or not in the unbound state of solvated IDPs. If it is possible to identify and characterize these molecular recognition features (MoRFs) in the IDP unbound state, then the results of this work will subsequently help to determine the structures of protein complexes involving IDPs.
112

Étudier les fonctions des protéines avec des nanoantennes fluorescentes

Harroun, Scott G. 09 1900 (has links)
Caractériser la fonction des protéines est crucial pour notre compréhension des mécanismes moléculaires de la vie, des maladies, et aussi pour inspirer de nouvelles applications en bionanotechnologie. Pour y arriver, il est nécessaire de caractériser la structure et la dynamique de chaque état occupé par la protéine durant sa fonction. La caractérisation expérimentale des états transitoires des protéines représente encore un défi majeur parce que les techniques à haute résolution structurelle, telles que la spectroscopie RMN et la cristallographie aux rayons X, peuvent difficilement être appliquées à l’étude des états de courte durée. De plus, les techniques à haute résolution temporelle, telles que la spectroscopie de fluorescence, nécessitent généralement une chimie complexe pour introduire des fluorophores à des endroits spécifiques dans la protéine. Dans cette thèse nous introduisons l’utilisation des nanoantennes fluorescentes en tant que nouvelle stratégie pour détecter et signaler les changements de conformation des protéines via des interactions non covalentes entre des fluorophores spécifiques et la surface de la protéine. En utilisant des expériences et des simulations moléculaires, nous démontrons que des fluorophores chimiquement divers peuvent se lier et être utilisés pour sonder différentes régions d’une enzyme modèle, la phosphatase alcaline (PA). Ces nanoantennes peuvent être fixées directement aux protéines ou utilisées à l'aide du système de fixation simple et modulaire, le complexe biotine-streptavidine (SA), qui permet un criblage rapide et efficace de la nanoantenne optimale tant dans sa composition que sa longueur. Dans le cas de la PA, nous montrons que nos nanoantennes permettent la détection et la caractérisation des conformations distinctes incluant les changements conformationnels nanoscopiques produisant durant la catalyse du substrat. Nous démontrons également que les signaux fluorescents émis par la nanoantenne peuvent également permettre de caractériser la cinétique enzymatique d’une protéine en une seule expérience tout en incluant la détermination des paramètres « Michaelis-Menten » de ses substrats et inhibiteurs. Nous avons également exploré l'universalité de la stratégie ces nanoantennes fluorescentes en utilisant une autre protéine modèle, la Protéine G et son interaction avec les anticorps, et avons démontré son utilité pour mettre au point un essai permettant de détecter les anticorps. Ces nanoantennes simples et faciles à utiliser peuvent être appliquées pour détecter et analyser les changements conformationnels de toutes tailles et nos résultats suggèrent qu'elles pourraient être utilisées pour caractériser n’importe quel type de fonction. / The characterisation of protein function is crucial to understanding the molecular mechanisms of life and disease, and inspires new applications in bionanotechnology. To do so, it is necessary to characterise the structure and dynamics of each state that proteins adopt during their function. Experimental study of protein transient states, however, remains a major challenge because high-structural-resolution techniques, including NMR spectroscopy and X-ray crystallography, can often not be directly applied to study short-lived protein states. On the other hand, high-temporal-resolution techniques, such as fluorescence spectroscopy, typically require complicated site-specific labelling chemistry. This thesis introduces the use of fluorescent nanoantennas as a new strategy for sensing and reporting on protein conformational changes through noncovalent dye-protein interactions driven by a high local concentration. Using experiments and molecular simulations, we first demonstrate that chemically diverse dyes can bind and be used to probe different regions of a model enzyme, intestinal alkaline phosphatase (AP). These nanoantennas can be attached directly to proteins or employed using the simple and modular biotin-streptavidin (SA) attachment system, which enables rapid and efficient screening for high sensitivity by tuning their length and composition. We show that these nanoantennas enable the detection and characterisation of distinct conformational changes of AP, including nanoscale conformational changes that occur during substrate catalysis. We also show that the fluorescent signal emitted by the nanoantenna enables complete characterisation of enzyme kinetics in one experiment, including determination of Michaelis-Menten parameters of substrates and inhibitors of AP. We then explored the universality of the nanoantenna strategy by using a different model protein system. Protein G was shown to interact with antibodies, using a rapid screening strategy for antibody detection. These effective and easy-to-use nanoantennas could potentially be employed to monitor various conformational changes, and our results offer potential for characterising various protein functions.

Page generated in 0.1267 seconds