• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 27
  • 12
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 105
  • 105
  • 63
  • 22
  • 20
  • 20
  • 19
  • 19
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Meta-heurísticas Iterated Local Search, GRASP e Artificial Bee Colony aplicadas ao Job Shop Flexível para minimização do atraso total. / Meta-heuristics Iterated Local Search, GRASP and Artificial Bee Colony applied to Flexible Job Shop minimizing total tardiness.

Everton Luiz de Melo 07 February 2014 (has links)
O ambiente de produção abordado neste trabalho é o Job Shop Flexível (JSF), uma generalização do Job Shop (JS). O problema de programação de tarefas, ou jobs, no ambiente JS é classificado por Garey; Johnson e Sethi (1976) como NP-Difícil e o JSF é, no mínimo, tão difícil quanto o JS. O JSF é composto por um conjunto de jobs, cada qual constituído por operações. Cada operação deve ser processada individualmente, sem interrupção, em uma única máquina de um subconjunto de máquinas habilitadas. O principal critério de desempenho considerado é a minimização dos atrasos dos jobs. São apresentados modelos de Programação Linear Inteira Mista (PLIM) para minimizar o atraso total e o instante de término da última operação, o makespan. São propostas novas regras de prioridade dos jobs, além de adaptações de regras da literatura. Tais regras são utilizadas por heurísticas construtivas e são aliadas a estratégias cujo objetivo é explorar características específicas do JSF. Visando aprimorar as soluções inicialmente obtidas, são propostas buscas locais e outros mecanismos de melhoria utilizados no desenvolvimento de três meta-heurísticas de diferentes categorias. Essas meta-heurísticas são: Iterated Local Search (ILS), classificada como meta-heurística de trajetória; Greedy Randomized Adaptive Search (GRASP), meta-heurística construtiva; e Artificial Bee Colony (ABC), meta-heurística populacional recentemente proposta. Esses métodos foram selecionados por alcançarem bons resultados para diversos problemas de otimização da literatura. São realizados experimentos computacionais com 600 instâncias do JSF, permitindo comparações entre os métodos de resolução. Os resultados mostram que explorar as características do problema permite que uma das regras de prioridade propostas supere a melhor regra da literatura em 81% das instâncias. As meta-heurísticas ILS, GRASP e ABC chegam a conseguir mais de 31% de melhoria sobre as soluções iniciais e a obter atrasos, em média, somente 2,24% superiores aos das soluções ótimas. Também são propostas modificações nas meta-heurísticas que permitem obter melhorias ainda mais expressivas sem aumento do tempo de execução. Adicionalmente é estudada uma versão do JSF com operações de Montagem e Desmontagem (JSFMD) e os experimentos realizados com um conjunto de 150 instâncias também indicam o bom desempenho dos métodos desenvolvidos. / The production environment addressed herein is the Flexible Job Shop (FJS), a generalization of the Job Shop (JS). In the JS environment, the jobs scheduling problem is classified by Garey; Johnson and Sethi (1976) as NP-Hard and the FJS is at least as difficult as the JS. FJS is composed of a set of jobs, each consisting of operations. Each operation must be processed individually, without interruption, in a single machine of a subset of enabled machines. The main performance criterion is minimizing the jobs tardiness. Mixed Integer Linear Programming (MILP) models are presented. These models minimize the total tardiness and the completion time of the last operation, makespan. New priority rules of jobs are proposed, as well as adaptations of rules from the literature. These rules are used by constructive heuristics and are combined with strategies aimed at exploiting specific characteristics of FSJ. In order to improve the solutions initially obtained, local searches and other improvement mechanisms are proposed and used in the development of metaheuristics of three different categories. These metaheuristics are: Iterated Local Search (ILS), classified as trajectory metaheuristic; Greedy Randomized Adaptive Search (GRASP), constructive metaheuristic, and Artificial Bee Colony (ABC), recently proposed population metaheuristic. These methods were selected owing to their good results for various optimization problems in the literature. Computational experiments using 600 FJS instances are carried out to allow comparisons between the resolution methods. The results show that exploiting the characteristics of the problem allows one of the proposed priority rules to exceed the best literature rule in about 81% of instances. Metaheuristics ILS, GRASP and ABC achieve more than 31% improvement over the initial solutions and obtain an average tardiness only 2.24% higher than the optimal solutions. Modifications in metaheuristics are proposed to obtain even more significant improvements without increased execution time. Additionally, a version called Disassembly and Assembly FSJ (DAFJS) is studied and the experiments performed with a set of 150 instances also indicate good performance of the methods developed.
92

Le problème de job-shop avec transport : modélisation et optimisation / Job-shop with transport : its modelling and optimisation

Larabi, Mohand 15 December 2010 (has links)
Dans cette thèse nous nous sommes intéressés à l’extension du problème job-shop en ajoutant la contrainte du transport des jobs entre les différentes machines. Dans cette étude nous avons retenu l’existence de deux types de robots, les robots de capacité de chargement unitaire (capacité=1 veut dire qu’un robot ne peut transporter qu’un seul job à la fois) et les robots de capacité de chargement non unitaire (capacité>1 veut dire qu’un robot peut transporter plusieurs job à la fois). Nous avons traité cette extension en deux étapes. Ainsi, la première étape est consacrée au problème du job-shop avec plusieurs robots de capacité de chargement unitaire et en seconde étape en ajoutant la capacité de chargement non unitaire aux robots. Pour les deux problèmes étudiés nous avons proposé :• Une modélisation linéaire ;• Une modélisation sous forme de graphe disjonctif ;• Plusieurs heuristiques de construction de solutions ;• Plusieurs recherches locales qui améliorent les solutions obtenues ;• Utilisation des algorithmes génétiques / mémétiques comme schéma global d’optimisation ;• De nouveaux benchmarks, des résultats de test de nos approches sur nos benchmarks et ceux de la littérature et ces résultats sont commentés et comparés à ceux de la littérature. Les résultats obtenus montrent la pertinence de notre modélisation ainsi que sa qualité. / In this thesis we are interested in the extension of the job-shop problem by adding the constraint of transport of jobs between different machines. In this study we used two types of robots, robots with unary loading capacity (capacity =1 means that each robot can carry only one job at a time,) and robots with non unary loading capacities (robot with capacity >1 can carry more than one job at time). Thus, the first step is devoted to the problem of job-shop with several robots with unary loading capacity. In the second step we extend the problem by adding the non-unary loading capacities to the robots. For both problems studied we have proposed :• A linear modeling ;• A Disjunctive graph Model ;• Several constructive heuristics ;• Several local searches methods that improve the obtained solutions ;• Use of genetic / memetic algorithms as a global optimization schema ;• New benchmarks, test results of our approaches on our benchmarks and those present in the literature and these results are commented and compared with those of literature. The results show the relevance of our model and its quality.
93

Le problème de job-shop avec transport : modélisation et optimisation

Larabi, Mohand 15 December 2010 (has links) (PDF)
Dans cette thèse nous nous sommes intéressés à l'extension du problème job-shop en ajoutant la contrainte du transport des jobs entre les différentes machines. Dans cette étude nous avons retenu l'existence de deux types de robots, les robots de capacité de chargement unitaire (capacité=1 veut dire qu'un robot ne peut transporter qu'un seul job à la fois) et les robots de capacité de chargement non unitaire (capacité>1 veut dire qu'un robot peut transporter plusieurs job à la fois). Nous avons traité cette extension en deux étapes. Ainsi, la première étape est consacrée au problème du job-shop avec plusieurs robots de capacité de chargement unitaire et en seconde étape en ajoutant la capacité de chargement non unitaire aux robots. Pour les deux problèmes étudiés nous avons proposé :* Une modélisation linéaire ;* Une modélisation sous forme de graphe disjonctif ;* Plusieurs heuristiques de construction de solutions ;* Plusieurs recherches locales qui améliorent les solutions obtenues ;* Utilisation des algorithmes génétiques / mémétiques comme schéma global d'optimisation ;* De nouveaux benchmarks, des résultats de test de nos approches sur nos benchmarks et ceux de la littérature et ces résultats sont commentés et comparés à ceux de la littérature. Les résultats obtenus montrent la pertinence de notre modélisation ainsi que sa qualité.
94

Técnicas de pesquisa operacional aplicadas ao problema de programação de cirurgias eletivas. / Operational research techniques applied to the elective surgeries scheduling problem.

Hortencio, Hanna Pamplona 20 May 2019 (has links)
Atualmente, os hospitais se veem obrigados a melhorar sua produtividade. Os centros cirúrgicos, além de ser um dos setores com maiores custos, também é o que mais gera receita dentro de um hospital, dessa forma torna-se extremamente importante o gerenciamento eficiente desse setor. Os métodos de otimização para programação de cirurgias podem ser usados como ferramentas para reduzir filas e ociosidade nos centros cirúrgicos, aumentando sua produtividade. O Problema de Programação de Cirurgias Eletivas com Múltiplos Recursos e Múltiplas Etapas consiste em alocar os recursos às etapas do processo cirúrgico dos pacientes, considerando as diferentes necessidades e rotas de cada paciente e, então, programar essas etapas no tempo respeitando a disponibilidade dos recursos e a sequência das etapas do processo cirúrgico dos pacientes. Esse problema é classificado na literatura como NP-hard e pode ser descrito como um Job Shop Flexível com blocking e função objetivo de minimização do número de pacientes não atendidos e do instante de término da última etapa, o makespan. O Objetivo desse trabalho é propor um modelo matemático e uma heurística construtiva para a resolução desse problema. O modelo matemático Multi-Mode Blocking Job Shop (MMBJS) apresentado em Pham e Klikert (2008) é explorado e algumas melhorias são apontadas neste trabalho. Um modelo matemático de Programação Linear Inteira Mista alternativo é proposto, a fim de reduzir o esforço computacional, ajustar o cálculo do makespan e sugerir uma estratégia de priorização de pacientes. Testes computacionais foram realizados, afim de comparar o modelo MMJBS e o modelo proposto. Para instâncias em que todos os pacientes são atendidos, as soluções encontradas pelo CPLEX para ambos modelos são iguais, porém o tempo computacional necessário para encontrar uma solução ótima é em média 45% menor no modelo proposto. Também foram realizados testes computacionais com objetivo de observar o comportamento do modelo com diferentes configurações de recursos. Para instâncias com 15 pacientes, os testes apontam que o tempo computacional para encontrar a solução ótima é superior a 2h de processamento. Dessa forma, uma heurística construtiva é proposta, com objetivo de gerar soluções factíveis com pouco esforço computacional. A heurística proposta aloca cada etapa do tratamento de cada paciente aos recursos necessários, respeitando as janelas de disponibilidade dos recursos e buscando reduzir a folga no sistema. Um exemplo de aplicação da heurística construtiva é apresentado. As propostas para trabalhos futuros são apresentadas no capítulo final desta dissertação. / For the past few years, hospitals have been forced to improve their productivity, with surgical centers being one of the sectors with higher costs within such organizations, but also the ones that generate the most revenue. Thus, optimization methods for surgical programming are tools that can be used to reduce queues and idleness in these sectors and consequently achieve the aforementioned goals. The \"Problem of Programming Multiple Surgical Resources with Multiple Steps\"consists in allocating the existing resources to each surgery stage that a patient will need to go through, considering the different needs, sequence and specificities of each of them, and then scheduling these steps in time. This type of problem is classified in the current literature as an NP-hard problem, being described as a Flexible Job Shop with blocking and an objective function that seeks to minimize the number of patients not served and the total makespan. The general purpose of this research is to propose a mathematical model and a constructive heuristic for this type problem. The proposed model explores the mathematical model Multi-Mode Blocking Job Shop (MMBJS) presented in Pham and Klikert (2008) suggesting improvements through the use of an alternative Mixed Integer Linear Programming that aims to: reduce the computational effort, adjust the makespan calculation and suggest a strategy of patients prioritization. In order to prove the benefits of the proposed enhancements, computational tests were performed to compare the MMJBS model and the proposed model, identifying that for instances where in which all patients are attended, the solutions found by CPLEX for both models are the same, but with a lower computational time the proposed model (45% average reduction). Also, other computational tests were performed to observe the behavior of the model with different configurations of resources. For instances with 15 patients, the tests indicate that the computational time to find the optimal solution is greater than 2 hours of processing. Thus a constructive heuristic is proposed, it aims to generate feasible solutions with little computational effort. The proposed heuristic allocates each surgery stage of a patient to the necessary resources, respecting the available windows and seeking to reduce the total slack in the system. An example of the application of the constructive heuristic is also presented. At last, future works proposals are presented in the final chapter of this dissertation.
95

DYNAMIC LOAD SCHEDULING FOR ENERGY EFFICIENCY IN A MICROGRID

Ashutosh Nayak (5930081) 16 January 2019 (has links)
Growing concerns over global warming and increasing fuel costs have pushed the traditional fuel-based centralized electrical grid to the forefront of mounting public pressure. These concerns will only intensify in the future, owing to the growth in electricity demand. Such growths require increased generation of electricity to meet the demand, and this means more carbon footprint from the electrical grid. To meet the growing demand economically by using clean sources of energy, the electrical grid needs significant structural and operational changes to cope with various challenges. Microgrids (µGs) can be an answer to the structural requirement of the electrical grid. µGs integrate renewables and serve local needs, thereby, reducing line losses and improving resiliency. However, stochastic nature of electricity harvest from renewables makes its integration into the grid challenging. The time varying and intermittent<br>nature of renewables and consumer demand can be mitigated by the use of storages and dynamic load scheduling. Automated dynamic load scheduling constitutes the operational changes that could enable us to achieve energy efficiency in the grid.<br>The current research works on automated load scheduling primarily focuses on scheduling residential and commercial building loads, while the current research on manufacturing scheduling is based on static approaches with very scarce literature on job shop scheduling. However, residential, commercial and, industrial sector, each contribute to about one-third of the total electricity consumption. A few research<br>works have been done focusing on dynamic scheduling in manufacturing facilities for energy efficiency. In a smart grid scenario, consumers are coupled through electricity<br>pool and storage. Thus, this research investigates the problem of integrating production line loads with building loads for optimal scheduling to reduce the total electricity<br>cost in a µG.<br>This research focuses on integrating the different types of loads from different types of consumers using automated dynamic load scheduling framework for sequential decision making. After building a deterministic model to be used as a benchmark, dynamic load scheduling models are constructed. Firstly, an intelligent algorithm is developed for load scheduling from a consumer’s perspective. Secondly, load scheduling model is developed based on central grid controller’s perspective. And finally, a reinforcement learning model is developed for improved load scheduling by sharing<br>among multiple µGs. The performance of the algorithms is compared against different well-known individualistic strategies, static strategies and, optimal benchmark<br>solutions. The proposed dynamic load scheduling framework is model free with minimum assumptions and it outperforms the different well-known heuristics and static strategies while obtains solutions comparable to the optimal benchmark solution.<br>The future electrical grid is envisioned to be an interconnected network of µGs. In addition to the automated load scheduling in a µG, coordination among µGs by<br>demand and capacity sharing can also be used to mitigate stochastic nature of supply and demand in an electrical grid. In this research, demand and resource sharing<br>among µGs is proposed to leverage the interaction between the different µGs for developing load scheduling policy based on reinforcement learning. <br>
96

Heuristic Methods For Job Scheduling In A Heat Treatment Shop To Maximize Kiln Utilization

Srinidhi, S 02 1900 (has links)
Scheduling in the context of manufacturing systems has become increasingly impor- tant in order for organizations to achieve success in dynamic and competitive scenarios. Scheduling can be described as allocation of available jobs over resources to meet the performance criteria defined in a domain. Our research work fo cuses on scheduling a given set of three-dimensional cylindrical items, each characterized by width wj , height hj, and depth dj , onto parallel non-identical rectangular heat treatment kilns, such that the capacities of the kilns is optimally used. The problem is strongly NP-hard as it generalizes the (one-dimensional) Bin Packing Problem (1BP), in which a set of n positive values wj has to be partitioned into the minimum number of subsets so that the total value in each subset does not exceed the bin capacity W. The problem has been formulated as a variant of the 3D-BPP by following the MILP approach, and we propose a weight optimization heuristic that produces solutions comparable to that of the LP problem, in addition to reducing the computational complexity. Finally, we also propose a Decomposition Algorithm (DA) and validate the perfor- mance effectiveness of our heuristic. The numerical analyses provides useful insights that influence the shop-floor decision making process.
97

Fertigungssteuerung in der Musterfertigung von Systemlieferanten

Kienzle, Florian 09 January 2012 (has links) (PDF)
An die Musterfertigung von Systemlieferanten stellt sich die besondere Anforderung, Prototypen verschiedener Erzeugnisse, in vielfältigen Kundenvarianten, in jeweils unterschiedlichen Produktreifegraden, parallel zu fertigen. Daraus resultiert eine spezifische Variabilitätsausprägung der Produktionsplanungsparameter, die zu einer hohen Komplexität und Turbulenz in der Ablaufsteuerung einer Musterfertigung führt. Infolgedessen gilt der Planparametervariabilitätsfall Musterfertigung, sowohl in der Theorie als auch in der betrieblichen Praxis, als ein bislang ungelöstes Steuerungsproblem, welches ein hohes Verbesserungspotenzial aufweist. Die vorliegende Arbeit analysiert und beleuchtet diesen Problemfall im Rahmen einer vergleichenden Fallstudienuntersuchung. Aufbauend auf den gewonnenen Erkenntnissen wird ein Konzept zur Steuerung einer Musterfertigung bei Systemlieferanten entwickelt und in seinem Anwendungszusammenhang evaluiert. / Sample production of tier 1 automotive suppliers demands producing simultaneously different product samples in many customised versions and within various maturity levels. The associated variability of the time-phased work content leads to a high degree of complexity and turbulence in the manufacturing process of such a production type. Therefore, sample production control becomes significantly more complicated and most existing control approaches fail in the real world. For this reason the present thesis examines this subject matter by means of a comparative case study. Based on the findings a customized production control concept will be introduced that fully adapts the specific needs of sample production of tier 1 automotive suppliers.
98

Une Approche Hybride de Simulation-Optimisation Basée sur la fouille de Données pour les problèmes d'ordonnancement

Shahzad, Atif 16 March 2011 (has links) (PDF)
Une approche hybride basée sur la fouille de données pour découvrir de nouvelles règles de priorité pour le problème l'ordonnancement job-shop est présentée. Cette approche est basée sur la recherche de connaissances supposées être intégrés dans les solutions efficaces fournies par un module d'optimisation préalablement mis en oeuvre et utilisant la recherche tabou. L'objectif est de découvrir les principes directeurs de l'ordonnancement à l'aide de la fouille de données et donc d'obtenir un ensemble de règles capables d'obtenir des solutions efficaces pour un problème d'ordonnancement. Une structure basée sur fouille de données est présentée et mise en œuvre pour un problème de job shop avec comme objectifs le retard maximum et le retard moyen. Les résultats obtenus sont très prometteurs.
99

Sem definição, abertura e informação, não pode haver participação: o caso da gestão de projetos e ações sociais nos correios do Espírito Santo

Silva, Reziere Degobi da 23 March 2007 (has links)
Made available in DSpace on 2016-12-23T13:44:55Z (GMT). No. of bitstreams: 1 dissertacao.pdf: 1052399 bytes, checksum: b17ce224ca3822e277c997fd00bd2c67 (MD5) Previous issue date: 2007-03-23 / This work presents an Artificial Immune System (AIS) to deal with problems scheduling. The Artificial Immunologic System developed in this project was based on the structure,architecture and functioning of the Biological or Natural Immune Systems. The use of Genetic Algorithm (GA) became necessary to represent the antibodies and antigens of the AIS. Each individual generated for the GA represented a processed task set library in a set of machines. The evaluation of each individual was given by a fitness function that represents the process of natural selection. The evolution of the individuals, and population as a consequence was obtained by applying the genetic operators of crossover e mutation. The machines and the tasks used for the scheduling represent the problem of Job Shop Scheduling (JSS). Some classic tests of the literature where applied to the problem in order to verify the viability of the AIS on the treatment of task of scheduling problems. Those tests also demonstrated the system s behavior its entire execution, therefore, allowing for a detailed analysis of the system s functionalities sets for certain time period. The representation of the natural immunologic systems through computational algorithms inspires from all over world researchers. The motivation is that the immunologic systems possess parallelism characteristics adaptability and learning, which can be applied in several problems found in many areas, had its portability. / Este trabalho apresenta um Sistema Imune Artificial (SIA) para tratar problemas de escalonamento. O Sistema Imunológico Artificial desenvolvido neste projeto baseia-se na estrutura arquitetura e funcionamento dos Sistemas Imunes Biológicos ou Naturais. O uso de Algoritmo Genético (AG) fez-se necessário para gerar os indivíduos a serem escalonados, representando os antígenos e anticorpos do SIA. Cada indivíduo gerado pelo AG representa um conjunto de tarefas processadas em um conjunto de máquinas. Os indivíduos são avaliados por uma função de aptidão que representa o processo de seleção natural. A evolução dos indivíduos e consequentemente das populações são obtidas aplicando-se os operadores genéticos de crossover e mutação. As tarefas e as máquinas, utilizadas para o escalonamento, representa o problema de Job Shop Scheduling (JSS). Ao problema, foram aplicados alguns testes clássicos da literatura, onde se verificou a viabilidade dos SIA para tratamento de problemas de escalonamento. Ainda com os testes, pode-se observar o comportamento do sistema durante toda a execução, possibilitando assim, uma análise criteriosa das funcionalidades do sistema e dos resultados gerados pela massa de teste, observados durante um período de tempo. A representação dos sistemas imunológicos naturais através de algoritmos computacionais tem inspirado pesquisadores de todo o mundo, a motivação é que os sistemas imunológicos possuem características de paralelismo adaptabilidade e aprendizagem, além da possibilidade de serem aplicados em diversos problemas das mais diversas áreas, devido sua portabilidade.
100

Řešení optimalizačních úloh inspirované živými organismy / Solving of Optimisation Tasks Inspired by Living Organisms

Popek, Miloš January 2010 (has links)
We meet with solving of optimization problems every day, when we try to do our tasks in the best way. An Ant Colony Optimization is an algorithm inspired by behavior of ants seeking a source of food. The Ant Colony Optimization is successfuly using on optimization tasks, on which is not possible to use a classical optimization methods. A Genetic Algorithm is inspired by transmision of a genetic information during crossover. The Genetic Algorithm is used for solving optimization tasks like the ACO algorithm. The result of my master's thesis is created simulator for solving choosen optimization tasks by the ACO algorithm and the Genetic Algorithm and a comparison of gained results on implemented tasks.

Page generated in 0.0497 seconds