1 |
Caractérisation biochimique des machineries de biosynthèse de t6A, un nucléoside modifié universel / Biochemical characterization of the biosynthesis machineries of t6A, a universal modified nucleosidePerrochia, Ludovic 25 June 2013 (has links)
Les ARN de transfert, éléments centraux de la traduction, présentent une grande variété de nucléosides modifiés dérivés des nucléosides canoniques (A, U, G et C), qui modulent la stabilité, la capacité de décodage et l’identité de ces molécules. t6A (thréonylcarbamoyl-N6-Adénosine) est un nucléoside hypermodifié retrouvé en position 37 (adjacent à l’anticodon) au niveau de tous les ARNt qui s’apparient aux codons de la forme ANN. Il joue un rôle essentiel dans la fidélité de traduction à travers deux fonctions principales : (i) il intervient dans le maintien de la bonne conformation de la boucle anticodon ; (ii) il facilite l’appariement codon/anticodon afin d’éviter le décalage de cadre de lecture durant la synthèse protéique. Ce nucléoside modifié est universel, présent chez les Archées, les Bactéries, les Eucaryotes, mais également chez les organites (mitochondries et chloroplastes), ce qui suggère que son apparition représente une acquisition évolutive importante et très ancienne, probablement antérieure au dernier ancêtre commun universel (LUCA). Pourtant, la voie de biosynthèse de t6A est restée inconnue pendant près de quarante ans.Récemment, des études de génétique ont montré que deux protéines universelles, Sua5/YrdC et Kae1/YgjD, sont nécessaires à sa synthèse chez Saccharomyces cerevisiae et Escherichia coli. Chez les Bactéries, la synthèse in vitro de t6A requiert la présence de deux autres protéines spécifiques à ce domaine du vivant : YeaZ et YjeE. Chez les Archées et les Eucaryotes, Kae1 (l’orthologue de YgjD) fait partie d’un complexe protéique conservé appelé KEOPS (pour Kinase Endopeptidase and Other Proteins of Small size), aux côtés de trois autres protéines : Bud32, Cgi121 et Pcc1, qui n’ont pas d’homologues chez les Bactéries. Depuis sa découverte en 2006 chez S.cerevisiae, ce complexe a été impliqué dans plusieurs processus cellulaires (homéostasie des télomères, maintien du génome, régulation de la transcription), sans que sa fonction ne soit clairement élucidée.Nous avons entrepris de caractériser et de comparer par une approche biochimique in vitro les machineries de biosynthèse de t6A issues des trois domaines du vivants, en utilisant comme organismes modèles l’Archée Pyrococcus abyssi, l’Eucaryote Saccharomyces cerevisiae et la Bactérie Escherichia coli. (i) Nous avons montré pour la première fois que le complexe KEOPS et la protéine Sua5 catalysent ensemble la synthèse de t6A chez les Archées et les Eucaryotes. Nos résultats nous ont permis d’élaborer un modèle de mécanisme catalytique, et nous avons montré par des expériences de complémentation in vitro que ce mécanisme est universel : les différents orthologues Sua5/YrdC sont interchangeables, et le complexe KEOPS est l’analogue fonctionnel du trio de protéines YgjD/YeaZ/YjeE Bactérien. (ii) Nous avons alors étudié le rôle de chacune des sous-unités du complexe KEOPS de Pyrococcus abyssi dans la synthèse de t6A. Ainsi, nous avons montré que Kae1 est le seul composant catalytique stricto sensus et que les trois autres partenaires ont des fonctions distinctes dans la régulation de l’activité catalytique. (iii) Enfin, nous avons étudié la synthèse de t6A chez la mitochondrie de S.cerevisiae, et avons montré que Sua5 et la protéine Qri7, l’orthologue mitochondrial de Kae1/YgjD, catalysent ensemble la synthèse de t6A et constituent ainsi un système minimaliste à deux composants.Ces résultats ouvrent la voie à une compréhension détaillée du mécanisme de biosynthèse de t6A dans les trois domaines du vivant, et permettent de proposer des scénarii évolutifs concernant l’histoire de la machinerie de synthèse de ce nucléoside modifié universel. / Transfer RNA are central elements of the translational system and carry a large diversity of modified nucleosides (derived from canonical nucleosides A, U, G, and C), which tune the stability, the decoding capacity and the identity of these oligonucleotides. t6A (threonylcarbamoyl-N6- adenosine) is a hypermodified nucleoside found at the position 37 (next to the anticodon) in all tRNA decoding ANN codons. It plays an essential role in the fidelity of translation through two main functions: (i) it ensures a correct conformation of the anticodon loop; (ii) it enhances codon/anticodon pairing to prevent frameshifting during translation. This nucleoside is universal, found in Archaea, Bacteria, Eukarya and also in organites such as mitochondria, which suggests that it appeared early in the evolution, probably before the last universal common ancestor (LUCA). Despite the importance of t6A and its distribution, its biosynthetic pathway has remained unknown for almost 40 years.Recently, genetic studies have shown that two universal proteins, Sua5/YrdC and Kae1/YgjD, are both necessary for synthesis of t6A in Saccharomyces cerevisiae and Escherichia coli. In Bacteria, the in vitro synthesis of t6A requires two other bacterial specific proteins called YeaZ and YjeE. In Archaea and Eukarya, Kae1 (the YgjD orthologue) is a part of a conserved protein complex called KEOPS (for Kinase Endopeptidase and Other Proteins of Small size), with three other proteins Bud32, Cgi121 and Pcc1, that have no bacterial homologues. Since its discovery in 2006 in yeast, this complex has been involved in several cellular processes (telomere homeostasis, genome maintenance, transcription regulation), but its real function remained unclear.Using an in vitro biochemical approach we aimed to characterize and compare the t6A biosynthesis systems from the three domains of life, using as model organisms Pyrococcus abyssi (Archaea) Saccharomyces cerevisiae (Eukarya), and Escherichia coli (Bacteria). We have reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. This allowed us to propose a model for the catalytic mechanism, and using in vitro complementation experiments we demonstrated that this mechanism is universal: Sua5/YrdC orthologues are interchangeable, and the KEOPS complex is the functional analogue of the bacterial trio YeaZ/YgjD/YjeE. In the second part of this work we have studied the role of each sub unit in the synthesis of t6A. Using KEOPS from P. abyssi as model we demonstrated that Kae1 is the only catalytic component while the three other partners have distinct functions in dimerization, tRNA binding and allosteric regulation. Finally, we have focused on the t6A synthesis in the mitochondria of S.cerevisiae, and shown that Sua5 and Qri7, the mitochondrial orthologue of Kae1/YgjD, catalyze together the synthesis of t6A and so represent a minimal two-component system.Overall these findings shed light on the reaction mechanism of t6A synthesis in the three domains of life, and allowed proposing a scenario concerning the history of the t6A synthesis machinery and its evolution.
|
2 |
Structural Basis of the Biosynthesis of the tRNA N6-threonylcarbamoyladenosine / Les bases structurales de la modification N6-threonylcarbamoyladenosine des ARNtZhang, Wenhua 05 December 2014 (has links)
La plupart de ARN de transfert (tRNA) subissent des modifications post-transcriptionnelle nécessaires à leur fonction. La modification t6A (N6-threonylcarbamoyladenosine) présente en position 37 des ARNt spécifiques des codons ANN, joue un rôle primordial dans la fidélité de la traduction (appariement correct avec le codon AUG initiateur ; prévention des décalages de phase de lecture etc.). La modification t6A est catalysée en deux étapes par les protéines de la famille Sua5 /YrdC (aboutissant à la synthèse d’un intermédiaire TCA : threonylcarbamoyladenylate) puis transfert de l’entité Carbamoylthreonine du TCA sur l’ARNt via les protéines du complexe KEOPS chez les eucaryotes et archae ou des protéines YgjD, YeaZ et YjeE chez les bactéries ou encore de la protéine Qri7 dans les mitochondries de levures. Le complexe KEOPS comprend les 4 sous-unités suivantes : Kae1, Bud32, Cgi121 et Pcc1 auxquelles s’ajoutent une 5ème sous-unité (Gon7) retrouvée uniquement chez la levure. Alors que YgjD est l’homologue bactérien de la protéine Kae1, YeaZ et YjeE n’ont pas d’homologue chez les eucaryotes ni les archées. Jusqu’à présent, les mécanismes catalytiques responsables de la modification t6A restent peu connus.Nous présentons dans cette thèse une série d’études structure-fonction de plusieurs protéines impliquées dans la biosynthèse de la modification t6A : Sua5 de P. Abyssi ; les sous-complexes Bud32-Cgi121 et Gon7-Pcc1 de S. cerevisiae ainsi que le sous-complexe YgjD-YeaZ de E. coli. Les principaux résultats confirment que Sua5/YrdC est l’acteur majeur de la synthèse de l’intermédiaire TCA via son activité pyrophosphatase. Dans la levure, la protéine Gon7, empêche l’homodimérisation de Pcc1 qui ne peut plus induire de dimérisation du complexe entier (alors que c’est le cas chez les archées pour lesquelles Gon7 est absente). La structure du sous-complexe Bud32-Cgi121 de levure fournit des informations essentielles quant à son rôle de Kinase et d’ATPase au sein du complexe KEOPS. Ensemble, ces deux structures Bud32-Cgi121 et Gon7-Pcc1 nous permettent de proposer un modèle pentamérique du complexe KEOPS. Enfin, concernant les protéines bactériennes, nous montrons que l’activité ATPase de YjeE est stimulée par son association au complexe YgjD-YeaZ et que la formation du complexe ternaire YgjD-YeaZ-YjeE a lieu en présence d’ATP. Nous proposons un modèle structural de ce complexe ternaire pouvant expliquer les rôles des protéines YeaZ et YjeE dans la modification t6A.L’ensemble des études structurales abordées dans cette thèse permet donc de mieux comprendre le mécanisme catalytique de la modification t6A essentielle et ubiquitaire dans les 3 royaumes de la vie. / Most tRNAs undergo chemical modifications during their maturation after the transcription. N6-threonylcarbamoyladenosine (t6A) is universally present at position 37 of tRNAs that recognize ANN-codons. tRNA t6A plays an essential role in translational fidelity through enhancing the codon-anticodon interaction. Recently, the tRNA t6A-modifying enzymes have been identified and characterized in bacteria, archaea and yeast. The biosynthesis of tRNA t6A proceeds in two main steps: first, the biosynthesis of an unstable intermediate threonylcarbamoyladenylate (TCA) by Sua5/YrdC family protein, using ATP, L-threonine, bicarbonate as substrates; second, the transfer of threonylcarbamoyl-moiety from TCA onto A37 of cognate tRNAs by a set of other proteins that use Kae1/Qri7/YgjD family proteins as a catalytic component. Though the biosynthesis of tRNA t6A could be accomplished by Sua5 and Qri7 in yeast mitochondria, the t6A biosynthesis in archaea and yeast cytoplasm requires Sua5 and KEOPS protein complex, which consists of Kae1, Bud32, Cgi121, Pcc1 in archaea, and a fifth Gon7 in yeast. In bacteria, it requires YrdC, YgjD, YeaZ and YjeE, of which YeaZ and YjeE are not related to any KEOPS subunits. Presently, the molecular mechanism of Sua5/YrdC in catalyzing the TCA biosynthesis is not well understood; How the KEOPS subunits assembly and cooperatively transfer threonylcarbamoyl-moiety from TCA to tRNA is not known; The contribution of YeaZ and YjeE in t6A biosynthesis in bacteria still remains to be probed.In this study, we report crystal structures of P. abyssi Sua5, S. cerevisiae Gon7/Pcc1 and Bud32/Cgi121 binary complexes, and E. coli YgjD-YeaZ heterodimer. Based on the information revealed by the crystal structures, advanced biochemical characterizations were carried out to validate the hypotheses. We confirm first that Sua5/YrdC is capable of catalyzing the TCA biosynthesis using substrates of ATP, L-threonine, and bicarbonate. The structure of P. abyssi Sua5 in complex with pyrophosphate provides a basis for its ATP-pyrophosphatase activity. Second, the structure of Gon7 reveals that it functions as a structural mimic of Pcc1 and therefore prevents the formation of Pcc1 homodimer, which mediates the formation of a dimer of tetrameric KEOPS from archaea. The structure of Bud32-Cgi121 in complex with ADP provides a basis in support of the dual kinase and ATPase activities of Bud32. We present a structural model of yeast KEOPS that exists as a heteropentamer. Third, we discovered that the weak intrinsic ATPase activity of YjeE is activated by YgjD-YeaZ heterodimer. YgjD, YeaZ and YjeE associate and form a ternary complex that is regulated by both the formation of YgjD-YeaZ heterodimer and the binding of ATP to YjeE. The model of YgjD-YeaZ-YjeE ternary complex provides structural insight into the essential role of YeaZ and YjeE in t6A biosynthesis in bacteria. This work provides structural insights into understanding the biosynthesis of tRNA t6A that is essential and ubiquitous in all three domains of life.
|
3 |
Etude des échanges côte-large au moyen des isotopes du radium : cas de la fertilisation en fer au large des îles Crozet et Kerguelen (Océan Austral) / Tracking the chemical elements derived from sediments to the open ocean using Ra isotopes : the case study of the Crozet and Kerguelen Islands (Southern Ocean)Sanial, Virginie 20 July 2015 (has links)
L'Océan Austral est connu pour être la plus vaste zone "High-Nutrient, Low-Chlorophyll" de l'océan mondial. Bien que les concentrations en nutriments (nitrates, phosphates, silicates) soient élevées, le développement du phytoplancton est paradoxalement limité principalement par les faibles concentrations en fer (Martin et al. 1990). Les archipels de Crozet et des Kerguelen, situés dans le secteur Indien de l'océan Austral, constituent deux obstacles topographiques importants à l'écoulement vers l'Est du Courant Circumpolaire Antarctique. L'interaction du courant avec les sédiments des plateaux peu profonds alimente en fer les eaux en aval de ces îles, générant ainsi d'importants blooms phytoplanctoniques (Blain et al. 2007, Pollard et al. 2007). Ceux-ci constituent des laboratoires à ciel ouvert uniques pour étudier la réponse des écosystèmes et l'impact de la fertilisation naturelle en fer sur les cycles biogéochimiques. Cette thèse s'inscrit sans le cadre du projet KEOPS-2. Les isotopes du radium (223Ra, 224Ra, 226Ra et 228Ra), qui constituent de puissants outils pour étudier la circulation océanique et le mélange, sont les principaux outils utilisés ici. Les quatre isotopes du radium ont des périodes radioactives allant de quelques jours à plus d'un millier d'années et sont produits par la décroissance radioactive du thorium dans le sédiment. Ils sont apportés à l'océan par des processus de diffusion et d'advection où ils se comportent comme des traceurs conservatifs de telle manière que la masse d'eau garde la signature de son contact avec les sédiments modulée par la période radioactive des isotopes du radium. Par conséquent, les isotopes du radium ont été utilisés pour (i) tracer l'origine et la dispersion des éléments chimiques - y compris le fer - libérés par les sédiments et (ii) estimer les échelles de temps du transit des eaux de surface depuis les plateaux continentaux vers le large. Les informations acquises avec les isotopes du radium ont été comparées aux informations issues d'outils physiques (flotteurs dérivant de surface et modèle Lagrangien dérivé de l'altimétrie). Premièrement, la comparaison de ces trois méthodes indépendantes - géochimiques et physiques - dans la région de Crozet a permis de valider leur utilisation. Deuxièmement, nous avons montré que le panache de phytoplancton associé aux îles Crozet est alimenté par deux sources différentes d'eau qui ont interagi avec soit le plateau ouest soit le plateau est. Troisièmement, cette approche couplée physique-géochimique a également été utilisée dans la région des Kerguelen et a aidé à contraindre l'origine de la fertilisation en fer dans cette zone. L'observation d'activités significatives de 223Ra et 224Ra dans les eaux de surface à l'est des îles Kerguelen indique que ces eaux ont récemment interagi avec des sédiments peu profonds. La variabilité spatiale de ces activités en surface au sud du Front Polaire (PF) suggère que le passage des eaux et des éléments chimiques à travers ou via le PF peut varier à la fois spatialement et temporellement. Cette voie constituerait donc un mécanisme de fertilisation (en fer et autres micronutriments) du bloom phytoplanctonique qui se développe au large des îles Kerguelen. Ces résultats indiquent que le PF n'agirait donc pas comme une barrière physique aussi forte qu'on le pensait, pour les masses d'eau et les éléments chimiques. Ces conclusions pourraient également s'appliquer à d'autres systèmes de fronts de l'océan mondial. Finalement, j'ai compilé les distributions de 226Ra et de baryum dissous (Ba) au large des îles Crozet et Kerguelen dans le but de fournir des contraintes supplémentaires sur la circulation locale. En particulier, des variations temporelles des rapports 226Ra/Ba dans la phase dissoute ont été observées. Parmi les hypothèses potentielles, on peut évoquer (i) des changements de la circulation ou (ii) un impact des processus biologiques sur les concentrations de Ra et Ba de la phase dissoute. / The Southern Ocean is known to be the largest High-Nutrient, Low-Chlorophyll region of the global ocean. While nutrient concentrations (nitrate, phosphate, silicate) are high, the phytoplankton development is paradoxically limited mostly because of the low dissolved iron concentrations of the Southern Ocean waters (Martin_iron_1990). The Crozet and Kerguelen Archipelagos, located in the Indian sector of the Southern Ocean, constitute two major topographic obstacles to the eastward-flowing Antarctic Circumpolar Current. The interaction of the current with the sediments of the shallow Crozet and Kerguelen plateaus contributes to the supply of iron downstream of these islands, thus leading to large phytoplankton blooms in these regions (Blain et al. 2007, Pollard et al. 2007). These phytoplankton blooms constitute unique open-air laboratories to study the response of the ecosystems and the impact on biogeochemical cycles to natural iron fertilization. This PhD thesis was done in the framework of the KEOPS-2 project. Radium isotopes (223Ra, 224Ra, 226Ra and 228Ra), that are powerful tools to study the ocean circulation and mixing, are the main tools used here. The four natural occurring isotopes display half-lives ranging from a few days to thousands of years and are produced by the decay of particle-bound thorium isotopes in sediments. They are delivered to the open ocean by diffusion and advection processes where they behave as conservative tracers in such a way that the water body keeps the signature of its contact with the sediments modulated by the half-lives of the radium isotopes. Therefore, we used Ra isotopes to (i) investigate the origin and the dispersion of the sediment-derived inputs - including iron - and (ii) to estimate the timescales of the transfer of surface waters between the shelf and offshore waters. We compared the Ra dataset with data acquired using physical tools (surface drifters and Lagrangian model derived from altimetry). Firstly, the use of three independent methods - including geochemical and physical methods - in the Crozet region allowed us to validate each method. Secondly, we show that the Crozet Island phytoplankton plume is fed by two different flows of water that interacted with either the western plateau or the eastern plateau. Thirdly, this physical-geochemical coupled approach was also used in the Kerguelen region and helped us to constrain the origin of the iron fertilization in that area. The observation of 223Ra and 224Ra in surface waters east of the Kerguelen Islands, south of the polar front (PF), indicates that these waters have recently interacted with shallow sediments. The spatial variability observed in the 223Ra and 224Ra distribution in surface waters south of the PF suggests that the input of waters and associated chemical elements across or via the PF - potentially driven by wind stress or eddies - act as sporadic pulses that may highly vary in both space and time. This pathway may thus constitute a mechanism that contributes to fertilizing the phytoplankton bloom with iron and other micronutrients east of the Kerguelen Islands. This finding also suggest that the PF may not act as a strong barrier for surface waters and associated chemical elements, a finding that may also apply for other frontal systems of the world's ocean. Finally, we investigated the 226Ra and barium (Ba) distributions offshore from the Crozet and Kerguelen islands, with the aim to provide additional constraints on the circulation patterns in this area. In particular, we observed temporal changes in the dissolved 226Ra/Ba ratios. Among potential hypothesis, one can invoke (i) changes in the circulation patterns or (ii) the impact of biological processes on the dissolved Ra and Ba concentrations.
|
4 |
Characterizing the KEOPS complex in Neuropsychiatric DisordersAbel, Mackenzie E. January 2020 (has links)
No description available.
|
5 |
Approche de la dynamique des particules dans le sillage des Kerguelen, à l'aide des traceurs géochimiques : 230Th et 231PaVenchiarutti, Célia 17 December 2007 (has links) (PDF)
Lors du projet Kerguelen Ocean and Plateau compared Study (KEOPS), la dynamique des particules (vitesses de chute, temps de résidence) et les interactions entre dissous et particules (" boundary scavenging ") ont été étudiées afin de mieux comprendre les mécanismes responsables de la fertilisation naturelle en fer observée sur le plateau des Kerguelen. <br />Notre étude utilise deux radionucléides le 230Th et le 231Pa - tous deux produits de désintégration de l'uranium et très réactifs vis-à-vis des particules - comme traceurs de la dynamique des particules.<br />L'étude des vitesses de chute des particules, estimées à partir des distributions de 230Th a montré que, paradoxalement à son fort export de C, le plateau avait des vitesses de chute des particules plus faibles (S= 500 m.an-1) que les stations du large dans les eaux HNLC (S=800 m.an-1). Ce résultat, assez surprenant, soulève une question quant à la limitation du modèle de scavenging 1D dans le cadre de l'étude de la dynamique des particules des systèmes côte-large et suggère l'utilisation d'un modèle 2D pour reproduire le scavenging de ces régions.<br />Sur le plateau, les fortes concentrations de 231Pa dissous suggèrent que du 231Pa a été relâché lors de la dégradation bactérienne d'agrégats, riches en opale (phase pour laquelle le Pa a une forte affinité).<br />Sur l'escarpement à l'Est du plateau, la diminution des concentrations de 230Th et de 231Pa dissous, concomitante à l'augmentation de leur concentration dans les particules, a montré un intense boundary scavenging le long de la pente du plateau, sous l'effet de couches néphéloïdes ou de re-suspension depuis les sédiments, riches en opale.
|
6 |
Caractérisation biochimique des machineries de biosynthèse de t6A, un nucléoside modifié universelPerrochia, Ludovic 25 June 2013 (has links) (PDF)
Les ARN de transfert, éléments centraux de la traduction, présentent une grande variété de nucléosides modifiés dérivés des nucléosides canoniques (A, U, G et C), qui modulent la stabilité, la capacité de décodage et l'identité de ces molécules. t6A (thréonylcarbamoyl-N6-Adénosine) est un nucléoside hypermodifié retrouvé en position 37 (adjacent à l'anticodon) au niveau de tous les ARNt qui s'apparient aux codons de la forme ANN. Il joue un rôle essentiel dans la fidélité de traduction à travers deux fonctions principales : (i) il intervient dans le maintien de la bonne conformation de la boucle anticodon ; (ii) il facilite l'appariement codon/anticodon afin d'éviter le décalage de cadre de lecture durant la synthèse protéique. Ce nucléoside modifié est universel, présent chez les Archées, les Bactéries, les Eucaryotes, mais également chez les organites (mitochondries et chloroplastes), ce qui suggère que son apparition représente une acquisition évolutive importante et très ancienne, probablement antérieure au dernier ancêtre commun universel (LUCA). Pourtant, la voie de biosynthèse de t6A est restée inconnue pendant près de quarante ans.Récemment, des études de génétique ont montré que deux protéines universelles, Sua5/YrdC et Kae1/YgjD, sont nécessaires à sa synthèse chez Saccharomyces cerevisiae et Escherichia coli. Chez les Bactéries, la synthèse in vitro de t6A requiert la présence de deux autres protéines spécifiques à ce domaine du vivant : YeaZ et YjeE. Chez les Archées et les Eucaryotes, Kae1 (l'orthologue de YgjD) fait partie d'un complexe protéique conservé appelé KEOPS (pour Kinase Endopeptidase and Other Proteins of Small size), aux côtés de trois autres protéines : Bud32, Cgi121 et Pcc1, qui n'ont pas d'homologues chez les Bactéries. Depuis sa découverte en 2006 chez S.cerevisiae, ce complexe a été impliqué dans plusieurs processus cellulaires (homéostasie des télomères, maintien du génome, régulation de la transcription), sans que sa fonction ne soit clairement élucidée.Nous avons entrepris de caractériser et de comparer par une approche biochimique in vitro les machineries de biosynthèse de t6A issues des trois domaines du vivants, en utilisant comme organismes modèles l'Archée Pyrococcus abyssi, l'Eucaryote Saccharomyces cerevisiae et la Bactérie Escherichia coli. (i) Nous avons montré pour la première fois que le complexe KEOPS et la protéine Sua5 catalysent ensemble la synthèse de t6A chez les Archées et les Eucaryotes. Nos résultats nous ont permis d'élaborer un modèle de mécanisme catalytique, et nous avons montré par des expériences de complémentation in vitro que ce mécanisme est universel : les différents orthologues Sua5/YrdC sont interchangeables, et le complexe KEOPS est l'analogue fonctionnel du trio de protéines YgjD/YeaZ/YjeE Bactérien. (ii) Nous avons alors étudié le rôle de chacune des sous-unités du complexe KEOPS de Pyrococcus abyssi dans la synthèse de t6A. Ainsi, nous avons montré que Kae1 est le seul composant catalytique stricto sensus et que les trois autres partenaires ont des fonctions distinctes dans la régulation de l'activité catalytique. (iii) Enfin, nous avons étudié la synthèse de t6A chez la mitochondrie de S.cerevisiae, et avons montré que Sua5 et la protéine Qri7, l'orthologue mitochondrial de Kae1/YgjD, catalysent ensemble la synthèse de t6A et constituent ainsi un système minimaliste à deux composants.Ces résultats ouvrent la voie à une compréhension détaillée du mécanisme de biosynthèse de t6A dans les trois domaines du vivant, et permettent de proposer des scénarii évolutifs concernant l'histoire de la machinerie de synthèse de ce nucléoside modifié universel.
|
Page generated in 0.0245 seconds