Spelling suggestions: "subject:"coalgebra"" "subject:"koalgebra""
1 |
Coalgebren und FunktorenSchröder, Tobias. January 2001 (has links) (PDF)
Marburg, Universiẗat, Diss., 2001.
|
2 |
Coalgebras, clone theory, and modal logicRößiger, Martin. Unknown Date (has links) (PDF)
Techn. University, Diss., 2000--Dresden.
|
3 |
Coalgebraic Methods for Object-Oriented Specification / Coalgebraische Methoden für Objektorientierte SpezifikationTews, Hendrik 24 September 2002 (has links) (PDF)
This thesis is about coalgebraic methods in software specification and verification. It extends known techniques of coalgebraic specification to a more general level to pave the way for real world applications of software verification. There are two main contributions of the present thesis: 1. Chapter 3 proposes a generalisation of the familiar notion of coalgebra such that classes containing methods with arbitrary types (including binary methods) can be modelled with these generalised coalgebras. 2. Chapter 4 presents the specification language CCSL (short for Coalgebraic Class Specification Language), its syntax, its semantics, and a prototype compiler that translates CCSL into higher-order logic. / Die Dissertation beschreibt coalgebraische Mittel und Methoden zur Softwarespezifikation und -verifikation. Die Ergebnisse dieser Dissertation vereinfachen die Anwendung coalgebraischer Spezifikations- und Verifikationstechniken und erweitern deren Anwendbarkeit. Damit werden Softwareverifikation im Allgemeinen und im Besonderen coalgebraische Methoden zur Softwareverifikation der praktischen Anwendbarkeit ein Stück nähergebracht. Diese Dissertation enthält zwei wesentliche Beiträge: 1. Im Kapitel 3 wird eine Erweiterung des klassischen Begriffs der Coalgebra vorgestellt. Diese Erweiterung erlaubt die coalgebraische Modellierung von Klassenschnittstellen mit beliebigen Methodentypen (insbesondere mit binären Methoden). 2. Im Kapitel 4 wird die coalgebraische Spezifikationssprache CCSL (Coalgebraic Class Specification Language) vorgestellt. Die Bescheibung umfasst Syntax, Semantik und einen Prototypcompiler, der CCSL Spezifikationen in Logik höherer Ordnung (passend für die Theorembeweiser PVS und Isabelle/HOL) übersetzt.
|
4 |
Coalgebraic Methods for Object-Oriented SpecificationTews, Hendrik 18 October 2002 (has links)
This thesis is about coalgebraic methods in software specification and verification. It extends known techniques of coalgebraic specification to a more general level to pave the way for real world applications of software verification. There are two main contributions of the present thesis: 1. Chapter 3 proposes a generalisation of the familiar notion of coalgebra such that classes containing methods with arbitrary types (including binary methods) can be modelled with these generalised coalgebras. 2. Chapter 4 presents the specification language CCSL (short for Coalgebraic Class Specification Language), its syntax, its semantics, and a prototype compiler that translates CCSL into higher-order logic. / Die Dissertation beschreibt coalgebraische Mittel und Methoden zur Softwarespezifikation und -verifikation. Die Ergebnisse dieser Dissertation vereinfachen die Anwendung coalgebraischer Spezifikations- und Verifikationstechniken und erweitern deren Anwendbarkeit. Damit werden Softwareverifikation im Allgemeinen und im Besonderen coalgebraische Methoden zur Softwareverifikation der praktischen Anwendbarkeit ein Stück nähergebracht. Diese Dissertation enthält zwei wesentliche Beiträge: 1. Im Kapitel 3 wird eine Erweiterung des klassischen Begriffs der Coalgebra vorgestellt. Diese Erweiterung erlaubt die coalgebraische Modellierung von Klassenschnittstellen mit beliebigen Methodentypen (insbesondere mit binären Methoden). 2. Im Kapitel 4 wird die coalgebraische Spezifikationssprache CCSL (Coalgebraic Class Specification Language) vorgestellt. Die Bescheibung umfasst Syntax, Semantik und einen Prototypcompiler, der CCSL Spezifikationen in Logik höherer Ordnung (passend für die Theorembeweiser PVS und Isabelle/HOL) übersetzt.
|
5 |
Coalgebras, clone theory, and modal logic / Coalgebren, Klontheorie und modale LogikRößiger, Martin 18 June 2000 (has links) (PDF)
gekürzte Fassung: Coalgebren wurden sowohl in der Mathematik (seit den 70er Jahren) als auch in der theoretischen Informatik (seit den 90er Jahren) untersucht. In der Mathematik sind Coalgebren dual zu universellen Algebren definiert. Sie bestehen aus einer Trägermenge A zusammen mit Cofunktionen ? : A ? , die A in die n-fache disjunkte Vereinigung von sich selbst abbilden. Das Ziel der Forschung ist hier vor allem, duale Versionen von Definitionen und Resultaten aus der universellen Algebra für die Welt der Coalgebren zu finden. Die theoretische Informatik betrachtet Coalgebren von kategorieller Seite aus. Für einen gegebenen Funktor F : C ? C sind Coalgebren als Paare (S,"alpha") definiert, wobei S ein Objekt von C und "alpha" : S ? F(S) ein Morphismus in C ist. Somit stellt der obige Ansatz mit Cofunktionen einen Spezialfall dar. Begriffe wie Homomorphismus oder Bisimularität lassen sich auf einfache Weise ausdrücken und handhaben. Solche Coalgebren modellieren eine große Anzahl von dynamischen Systemen. Das liefert eine kanonische und vereinheitlichende Sicht auf diese Systeme. Die vorliegende Dissertation führt beide genannten Forschungsrichtungen der Coalgebren weiter: Teil I beschäftigt sich mit "klassischen" Coalgebren, also solchen, wie sie in der universellen Algebra untersucht werden. Insbesondere wird das Verhältnis zur Klontheorie erforscht. Teil II der Arbeit widmet sich dem kategoriellen Ansatz aus der theoretischen Informatik. Von speziellem Interesse ist hier die Anwendung von Coalgebren zur Spezifikation von Systemen. Coalgebren und Klontheorie In der universellen Algebra spielen Systeme von Funktionen eine bedeutende Rolle, u.a. in der Klontheorie. Dort betrachtet man Funktionen auf einer festen gegebenen Grundmenge. Klone von Funktionen sind Mengen von Funktionen, die alle Projektionen enthalten und die gegen Superposition (d.h. Einsetzen) abgeschlossen sind. Extern lassen sich diese Klone als Galois-abgeschlossene Mengengzgl. der Galois-Verbindung zwischen Funktionen und Relationen darstellen. Diese Galois-Verbindung wird durch die Eigenschaft einer Funktion induziert, eine Relation zu bewahren. Dual zu Klonen von Funktionen wurde von B. Csákány auch Klone von Cofunktionen untersucht. Folglich stellt sich die Frage, ob solche Klone ebenfalls mittels einer geeigneten Galois-Verbindung charakterisiert werden können. Die vorliegende Arbeit führt zunächst den Begriff von Corelationen ein. Es wird auf kanonische Weise definiert, was es heißt, daß eine Cofunktion eine Corelation bewahrt. Dies mündet in einer Galois-Theorie, deren Galois-abgeschlossene Mengen von Cofunktionen tatsächlich genau die Klone von Cofunktionen sind. Überdies entsprechen die Galois-abgeschlossenen Mengen von Corelationen genau den Klonen von Corelationen. Die Galois-Theorien von Funktionen und Relationen einerseits und Cofunktionen und Corelationen anderseits sind sich sehr ähnlich. Das wirft die Frage auf, welche Voraussetzungen allgemein nötig sind, um solche und ähnliche Galois-Theorien aufzustellen und die entsprechenden Galois-abgeschlossenen Mengen zu charakterisieren. Das Ergebnis ist eine Metatheorie, bei der die Gemeinsamkeiten in den Charakterisierungen der Galois-abgeschlossenen Mengen herausgearbeitet sind. Bereits bekannte Galois-Theorien erweisen sich als Spezialfälle dieser Metatheorie, und zwar die Galois-Theorien von partiellen Funktionen und Relationen, von mehrwertigen Funktionen und Relationen und von einstelligen Funktionen und Relationen....
|
6 |
Coalgebras, clone theory, and modal logicRößiger, Martin 11 July 2000 (has links)
gekürzte Fassung: Coalgebren wurden sowohl in der Mathematik (seit den 70er Jahren) als auch in der theoretischen Informatik (seit den 90er Jahren) untersucht. In der Mathematik sind Coalgebren dual zu universellen Algebren definiert. Sie bestehen aus einer Trägermenge A zusammen mit Cofunktionen ? : A ? , die A in die n-fache disjunkte Vereinigung von sich selbst abbilden. Das Ziel der Forschung ist hier vor allem, duale Versionen von Definitionen und Resultaten aus der universellen Algebra für die Welt der Coalgebren zu finden. Die theoretische Informatik betrachtet Coalgebren von kategorieller Seite aus. Für einen gegebenen Funktor F : C ? C sind Coalgebren als Paare (S,"alpha") definiert, wobei S ein Objekt von C und "alpha" : S ? F(S) ein Morphismus in C ist. Somit stellt der obige Ansatz mit Cofunktionen einen Spezialfall dar. Begriffe wie Homomorphismus oder Bisimularität lassen sich auf einfache Weise ausdrücken und handhaben. Solche Coalgebren modellieren eine große Anzahl von dynamischen Systemen. Das liefert eine kanonische und vereinheitlichende Sicht auf diese Systeme. Die vorliegende Dissertation führt beide genannten Forschungsrichtungen der Coalgebren weiter: Teil I beschäftigt sich mit "klassischen" Coalgebren, also solchen, wie sie in der universellen Algebra untersucht werden. Insbesondere wird das Verhältnis zur Klontheorie erforscht. Teil II der Arbeit widmet sich dem kategoriellen Ansatz aus der theoretischen Informatik. Von speziellem Interesse ist hier die Anwendung von Coalgebren zur Spezifikation von Systemen. Coalgebren und Klontheorie In der universellen Algebra spielen Systeme von Funktionen eine bedeutende Rolle, u.a. in der Klontheorie. Dort betrachtet man Funktionen auf einer festen gegebenen Grundmenge. Klone von Funktionen sind Mengen von Funktionen, die alle Projektionen enthalten und die gegen Superposition (d.h. Einsetzen) abgeschlossen sind. Extern lassen sich diese Klone als Galois-abgeschlossene Mengengzgl. der Galois-Verbindung zwischen Funktionen und Relationen darstellen. Diese Galois-Verbindung wird durch die Eigenschaft einer Funktion induziert, eine Relation zu bewahren. Dual zu Klonen von Funktionen wurde von B. Csákány auch Klone von Cofunktionen untersucht. Folglich stellt sich die Frage, ob solche Klone ebenfalls mittels einer geeigneten Galois-Verbindung charakterisiert werden können. Die vorliegende Arbeit führt zunächst den Begriff von Corelationen ein. Es wird auf kanonische Weise definiert, was es heißt, daß eine Cofunktion eine Corelation bewahrt. Dies mündet in einer Galois-Theorie, deren Galois-abgeschlossene Mengen von Cofunktionen tatsächlich genau die Klone von Cofunktionen sind. Überdies entsprechen die Galois-abgeschlossenen Mengen von Corelationen genau den Klonen von Corelationen. Die Galois-Theorien von Funktionen und Relationen einerseits und Cofunktionen und Corelationen anderseits sind sich sehr ähnlich. Das wirft die Frage auf, welche Voraussetzungen allgemein nötig sind, um solche und ähnliche Galois-Theorien aufzustellen und die entsprechenden Galois-abgeschlossenen Mengen zu charakterisieren. Das Ergebnis ist eine Metatheorie, bei der die Gemeinsamkeiten in den Charakterisierungen der Galois-abgeschlossenen Mengen herausgearbeitet sind. Bereits bekannte Galois-Theorien erweisen sich als Spezialfälle dieser Metatheorie, und zwar die Galois-Theorien von partiellen Funktionen und Relationen, von mehrwertigen Funktionen und Relationen und von einstelligen Funktionen und Relationen....
|
Page generated in 0.0414 seconds