Spelling suggestions: "subject:"krylov subspace"" "subject:"krylov kubspace""
21 |
On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse ProblemsBrown, Matthew Allen 20 February 2015 (has links)
Iterative Krylov subspace methods have proven to be efficient tools for solving linear systems of equations. In the context of ill-posed inverse problems, they tend to exhibit semiconvergence behavior making it difficult detect ``inverted noise" and stop iterations before solutions become contaminated. Regularization methods such as spectral filtering methods use the singular value decomposition (SVD) and are effective at filtering inverted noise from solutions, but are computationally prohibitive on large problems. Hybrid methods apply regularization techniques to the smaller ``projected problem" that is inherent to iterative Krylov methods at each iteration, thereby overcoming the semiconvergence behavior.
Commonly, the Golub-Kahan bidiagonalization is used to construct a set of orthonormal basis vectors that span the Krylov subspaces from which solutions will be chosen, but seeking a solution in the orthonormal basis generated by the Arnoldi process (which is fundamental to the popular iterative method GMRES) has been of renewed interest recently. We discuss some of the positive and negative aspects of each process and use example problems to examine some qualities of the bases they produce. Computing optimal solutions in a given basis gives some insight into the performance of the corresponding iterative methods and how hybrid methods can contribute. / Master of Science
|
22 |
Efficient computation of shifted linear systems of equations with application to PDEsEneyew, Eyaya Birara 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: In several numerical approaches to PDEs shifted linear systems of the form (zI - A)x = b, need to be solved for several values of the complex scalar z. Often, these linear systems
are large and sparse. This thesis investigates efficient numerical methods for these systems
that arise from a contour integral approximation to PDEs and compares these methods
with direct solvers.
In the first part, we present three model PDEs and discuss numerical approaches to solve
them. We use the first problem to demonstrate computations with a dense matrix, the
second problem to demonstrate computations with a sparse symmetric matrix and the
third problem for a sparse but nonsymmetric matrix. To solve the model PDEs numerically
we apply two space discrerization methods, namely the finite difference method and the
Chebyshev collocation method. The contour integral method mentioned above is used to
integrate with respect to the time variable.
In the second part, we study a Hessenberg reduction method for solving shifted linear
systems with a dense matrix and present numerical comparison of it with the built-in
direct linear system solver in SciPy. Since both are direct methods, in the absence of
roundoff errors, they give the same result. However, we find that the Hessenberg reduction
method is more efficient in CPU-time than the direct solver. As application we solve a
one-dimensional version of the heat equation.
In the third part, we present efficient techniques for solving shifted systems with a sparse
matrix by Krylov subspace methods. Because of their shift-invariance property, the Krylov
methods allow one to obtain approximate solutions for all values of the parameter, by generating a single approximation space. Krylov methods applied to the linear systems are
generally slowly convergent and hence preconditioning is necessary to improve the convergence.
The use of shift-invert preconditioning is discussed and numerical comparisons with
a direct sparse solver are presented. As an application we solve a two-dimensional version
of the heat equation with and without a convection term. Our numerical experiments
show that the preconditioned Krylov methods are efficient in both computational time and
memory space as compared to the direct sparse solver. / AFRIKAANSE OPSOMMING: In verskeie numeriese metodes vir PDVs moet geskuifde lineêre stelsels van die vorm (zI − A)x = b, opgelos word vir verskeie waardes van die komplekse skalaar z. Hierdie stelsels is dikwels
groot en yl. Hierdie tesis ondersoek numeriese metodes vir sulke stelsels wat voorkom in
kontoerintegraalbenaderings vir PDVs en vergelyk hierdie metodes met direkte metodes
vir oplossing.
In die eerste gedeelte beskou ons drie model PDVs en bespreek numeriese benaderings
om hulle op te los. Die eerste probleem word gebruik om berekenings met ’n vol matriks
te demonstreer, die tweede probleem word gebruik om berekenings met yl, simmetriese
matrikse te demonstreer en die derde probleem vir yl, onsimmetriese matrikse. Om die
model PDVs numeries op te los beskou ons twee ruimte-diskretisasie metodes, naamlik
die eindige-verskilmetode en die Chebyshev kollokasie-metode. Die kontoerintegraalmetode
waarna hierbo verwys is word gebruik om met betrekking tot die tydveranderlike te
integreer.
In die tweede gedeelte bestudeer ons ’n Hessenberg ontbindingsmetode om geskuifde lineêre
stelsels met ’n vol matriks op te los, en ons rapporteer numeriese vergelykings daarvan met
die ingeboude direkte oplosser vir lineêre stelsels in SciPy. Aangesien beide metodes direk
is lewer hulle dieselfde resultate in die afwesigheid van afrondingsfoute. Ons het egter
bevind dat die Hessenberg ontbindingsmetode meer effektief is in terme van rekenaartyd in
vergelyking met die direkte oplosser. As toepassing los ons ’n een-dimensionele weergawe
van die hittevergelyking op.
In die derde gedeelte beskou ons effektiewe tegnieke om geskuifde stelsels met ’n yl matriks op te los, met Krylov subruimte-metodes. As gevolg van hul skuifinvariansie eienskap,
laat die Krylov metodes mens toe om benaderde oplossings te verkry vir alle waardes van
die parameter, deur slegs een benaderingsruimte voort te bring. Krylov metodes toegepas
op lineêre stelsels is in die algemeen stadig konvergerend, en gevolglik is prekondisionering
nodig om die konvergensie te verbeter. Die gebruik van prekondisionering gebasseer
op skuif-en-omkeer word bespreek en numeriese vergelykings met direkte oplossers word
aangebied. As toepassing los ons ’n twee-dimensionele weergawe van die hittevergelyking
op, met ’n konveksie term en daarsonder. Ons numeriese eksperimente dui aan dat die
Krylov metodes met prekondisionering effektief is, beide in terme van berekeningstyd en
rekenaargeheue, in vergelyking met die direkte metodes.
|
23 |
Globální krylovovské metody pro řešení lineárních algebraických problémů s maticovým pozorováním / Global krylov methods for solving linear algebraic problems with matrix observationsRapavý, Martin January 2019 (has links)
In this thesis we study methods for solving systems of linear algebraic equati- ons with multiple right hand sides. Specifically we focus on block Krylov subspace methods and global Krylov subspace methods, which can be derived by various approaches to generalization of methods GMRES and LSQR for solving systems of linear equations with single right hand side. We describe the difference in construction of orthonormal basis in block methods and F-orthonormal basis in global methods, in detail. Finally, we provide numerical experiments for the deri- ved algorithms in MATLAB enviroment. On carefully selected test problems we compare convergence properties of the methods. 1
|
24 |
A rational SHIRA method for the Hamiltonian eigenvalue problemBenner, Peter, Effenberger, Cedric 07 January 2009 (has links) (PDF)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.
|
25 |
NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONSLiu, Jun 01 August 2015 (has links)
Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs) has tremendous applications in engineering and science, such as shape optimization, image processing, fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE, and wave PDE, respectively. The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating applications and summarize some theoretical and computational foundations of our following developed approaches. In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton method that is applied to the first-order necessary optimality system arising from semi-linear control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different from current available approaches, a new strategy that leads to a robust multigrid solver is employed to define the coarse grid operator. Numerical simulations are provided to illustrate the efficiency of the proposed method, which shows to be computationally more efficient than the popular full approximation storage (FAS) multigrid method. In particular, our proposed approach achieves a mesh-independent convergence and its performance is highly robust with respect to the regularization parameter. In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solving the first-order necessary optimality system of the linear parabolic optimal control problems. The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order accuracy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of a fast solver under the multigrid framework. Numerical examples show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach, and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity. In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the discretized first-order necessary optimality system that characterizes the optimal solution of semi-linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretization scheme in time associated with the standard five-point stencil in space is established to achieve a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is proved when time-periodic solutions are considered. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of an effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations as well as the optimal linear complexity of computing time. In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-order necessary optimality system arising in optimal control of wave equations. With a five-point central finite difference scheme in space, the full discretization is proved to be unconditionally convergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its advantageous developed structure, an efficient preconditioned Krylov subspace method is provided and analyzed for solving the discretized sparse linear system. Numerical examples are presented to confirm our theoretical conclusions and demonstrate the promising performance of proposed preconditioned iterative solver. Finally, brief summaries and future research perspectives are given in Chapter 6.
|
26 |
Non-Krylov Non-iterative Subspace Methods For Linear Discrete Ill-posed ProblemsBai, Xianglan 26 July 2021 (has links)
No description available.
|
27 |
Metody vynucení nonnegativity řešení v krylovovské regularizaci / Methods for enforcing non-negativity of solution in Krylov regularizationHoang, Phuong Thao January 2021 (has links)
The purpose of this thesis is to study how to overcome difficulties one typically encounters when solving non-negative inverse problems by standard Krylov subspace methods. We first give a theoretical background to the non-negative inverse problems. Then we concentrate on selected modifications of Krylov subspace methods known to improve the solution significantly. We describe their properties, provide their implementation and propose an improvement for one of them. After that, numerical experiments are presented giving a comparison of the methods and analyzing the influence of the present parameters on the behavior of the solvers. It is clearly demonstrated, that the methods imposing nonnegativity perform better than the unconstrained methods. Moreover, our improvement leads in some cases to a certain reduction of the number of iterations and consequently to savings of the computational time while preserving a good quality of the approximation.
|
28 |
A new block Krylov subspace framework with applications to functions of matrices acting on multiple vectorsLund, Kathryn January 2018 (has links)
We propose a new framework for understanding block Krylov subspace methods, which hinges on a matrix-valued inner product. We can recast the ``classical" block Krylov methods, such as O'Leary's block conjugate gradients, global methods, and loop-interchange methods, within this framework. Leveraging the generality of the framework, we develop an efficient restart procedure and error bounds for the shifted block full orthogonalization method (Sh-BFOM(m)). Regarding BFOM as the prototypical block Krylov subspace method, we propose another formalism, which we call modified BFOM, and show that block GMRES and the new block Radau-Lanczos method can be regarded as modified BFOM. In analogy to Sh-BFOM(m), we develop an efficient restart procedure for shifted BGMRES with restarts (Sh-BGMRES(m)), as well as error bounds. Using this framework and shifted block Krylov methods with restarts as a foundation, we formulate block Krylov subspace methods with restarts for matrix functions acting on multiple vectors f(A)B. We obtain convergence bounds for \bfomfom (BFOM for Functions Of Matrices) and block harmonic methods (i.e., BGMRES-like methods) for matrix functions. With various numerical examples, we illustrate our theoretical results on Sh-BFOM and Sh-BGMRES. We also analyze the matrix polynomials associated to the residuals of these methods. Through a variety of real-life applications, we demonstrate the robustness and versatility of B(FOM)^2 and block harmonic methods for matrix functions. A particularly interesting example is the tensor t-function, our proposed definition for the function of a tensor in the tensor t-product formalism. Despite the lack of convergence theory, we also show that the block Radau-Lanczos modification can reduce the number of cycles required to converge for both linear systems and matrix functions. / Mathematics
|
29 |
Recycling Krylov Subspaces and PreconditionersAhuja, Kapil 15 November 2011 (has links)
Science and engineering problems frequently require solving a sequence of single linear systems or a sequence of dual linear systems. We develop algorithms that recycle Krylov subspaces and preconditioners from one system (or pair of systems) in the sequence to the next, leading to efficient solutions.
Besides the benefit of only having to store few Lanczos vectors, using BiConjugate Gradients (BiCG) to solve dual linear systems may have application-specific advantages. For example, using BiCG to solve the dual linear systems arising in interpolatory model reduction provides a backward error formulation in the model reduction framework. Using BiCG to evaluate bilinear forms -- for example, in the variational Monte Carlo (VMC) algorithm for electronic structure calculations -- leads to a quadratic error bound. Since one of our focus areas is sequences of dual linear systems, we introduce recycling BiCG, a BiCG method that recycles two Krylov subspaces from one pair of dual linear systems to the next pair. The derivation of recycling BiCG also builds the foundation for developing recycling variants of other bi-Lanczos based methods like CGS, BiCGSTAB, BiCGSTAB2, BiCGSTAB(l), QMR, and TFQMR.
We develop a generalized bi-Lanczos algorithm, where the two matrices of the bi-Lanczos procedure are not each other's conjugate transpose but satisfy this relation over the generated Krylov subspaces. This is sufficient for a short term recurrence. Next, we derive an augmented bi-Lanczos algorithm with recycling and show that this algorithm is a special case of generalized bi-Lanczos. The Petrov-Galerkin approximation that includes recycling in the iteration leads to modified two-term recurrences for the solution and residual updates.
We generalize and extend the framework of our recycling BiCG to CGS, BiCGSTAB and BiCGSTAB2. We perform extensive numerical experiments and analyze the generated recycle space. We test all of our recycling algorithms on a discretized partial differential equation (PDE) of convection-diffusion type. This PDE problem provides well-known test cases that are easy to analyze further. We use recycling BiCG in the Iterative Rational Krylov Algorithm (IRKA) for interpolatory model reduction and in the VMC algorithm. For a model reduction problem, we show up to 70% savings in iterations, and we also demonstrate that solving the problem without recycling leads to (about) a 50% increase in runtime. Experiments with recycling BiCG for VMC gives promising results.
We also present an algorithm that recycles preconditioners, leading to a dramatic reduction in the cost of VMC for large(r) systems. The main cost of the VMC method is in constructing a sequence of Slater matrices and computing the ratios of determinants for successive Slater matrices. Recent work has improved the scaling of constructing Slater matrices for insulators, so that the cost of constructing Slater matrices in these systems is now linear in the number of particles. However, the cost of computing determinant ratios remains cubic in the number of particles. With the long term aim of simulating much larger systems, we improve the scaling of computing determinant ratios in the VMC method for simulating insulators by using preconditioned iterative solvers.
The main contribution here is the development of a method to efficiently compute for the Slater matrices a sequence of preconditioners that make the iterative solver converge rapidly. This involves cheap preconditioner updates, an effective reordering strategy, and a cheap method to monitor instability of ILUTP preconditioners. Using the resulting preconditioned iterative solvers to compute determinant ratios of consecutive Slater matrices reduces the scaling of the VMC algorithm from O(n^3) per sweep to roughly O(n^2), where n is the number of particles, and a sweep is a sequence of n steps, each attempting to move a distinct particle. We demonstrate experimentally that we can achieve the improved scaling without increasing statistical errors. / Ph. D.
|
30 |
A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics / Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysiqueFerreira Lago, Rafael 13 June 2013 (has links)
Les travaux de ce doctorat concernent le développement de méthodes itératives pour la résolution de systèmes linéaires creux de grande taille comportant de nombreux seconds membres. L’application visée est la résolution d’un problème inverse en géophysique visant à reconstruire la vitesse de propagation des ondes dans le sous-sol terrestre. Lorsque de nombreuses sources émettrices sont utilisées, ce problème inverse nécessite la résolution de systèmes linéaires complexes non symétriques non hermitiens comportant des milliers de seconds membres. Dans le cas tridimensionnel ces systèmes linéaires sont reconnus comme difficiles à résoudre plus particulièrement lorsque des fréquences élevées sont considérées. Le principal objectif de cette thèse est donc d’étendre les développements existants concernant les méthodes de Krylov par bloc. Nous étudions plus particulièrement les techniques de déflation dans le cas multiples seconds membres et recyclage de sous-espace dans le cas simple second membre. Des gains substantiels sont obtenus en terme de temps de calcul par rapport aux méthodes existantes sur des applications réalistes dans un environnement parallèle distribué. / This PhD thesis concerns the development of flexible Krylov subspace iterative solvers for the solution of large sparse linear systems of equations with multiple right-hand sides. Our target application is the solution of the acoustic full waveform inversion problem in geophysics associated with the phenomena of wave propagation through an heterogeneous model simulating the subsurface of Earth. When multiple wave sources are being used, this problem gives raise to large sparse complex non-Hermitian and nonsymmetric linear systems with thousands of right-hand sides. Specially in the three-dimensional case and at high frequencies, this problem is known to be difficult. The purpose of this thesis is to develop a flexible block Krylov iterative method which extends and improves techniques already available in the current literature to the multiple right-hand sides scenario. We exploit the relations between each right-hand side to accelerate the convergence of the overall iterative method. We study both block deflation and single right-hand side subspace recycling techniques obtaining substantial gains in terms of computational time when compared to other strategies published in the literature, on realistic applications performed in a parallel environment.
|
Page generated in 0.0504 seconds