• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrating Multiple Deep Learning Models for Disaster Description in Low-Altitude Videos

Wang, Haili 12 1900 (has links)
Computer vision technologies are rapidly improving and becoming more important in disaster response. The majority of disaster description techniques now focus either on identify objects or categorize disasters. In this study, we trained multiple deep neural networks on low-altitude imagery with highly imbalanced and noisy labels. We utilize labeled images from the LADI dataset to formulate a solution for general problem in disaster classification and object detection. Our research integrated and developed multiple deep learning models that does the object detection task as well as the disaster scene classification task. Our solution is competitive in the TRECVID Disaster Scene Description and Indexing (DSDI) task, demonstrating that it is comparable to other suggested approaches in retrieving disaster-related video clips.

Page generated in 0.0544 seconds