• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensor Package Analysis and Simulation for Direct Sensor-to-Satellite Links

Al-Saleh, Mohammad 19 January 2008 (has links)
This thesis investigates the design and the performance of low-power microsensors that communicate directly to a satellite or a constellation of satellites. Information is spread using pseudo noise (PN) or Barker codes. The sensors use a single circular microstrip patch element with a wide beamwidth or a miniature phased array antenna that continuously scans to access the satellite(s). The array beam is controlled with a beam-forming network (BFN), which contains 3 or 4-bit phase shifters, which can be made in micro-electro-mechanical systems (MEMS) or in monolithic microwave integrated circuits (MMIC). The antennas are designed using array simulation program called 'ARRAY' and the results are used in another simulation program called Advanced Design System (ADS) to simulate the whole sensor package that uses one of the antennas. The simulation results show that a sensor as small as 2.35 cm in diameter is able to send information with data rate of 1 kbps at bit error rate less than 10?? to low-earth orbit (LEO) satellites with a transmitted power of 27.5 microwatts (-15.6 dBm). / Master of Science
2

Satellite communications strategy selection for optimal LEO satellite communication

Bezuidenhout, Quintus 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: A low earth orbit satellite system can be useful in numerous communication applications where physical connections are not possible. Communication time available from any point on earth to the satellite is less than one hour per day. This one hour is fragmented into smaller time slots due to the satellite orbiting. This is not much time to transfer data and there is even less time available to transfer data when there are other external factors affecting the system. It is thus crucial to optimise the satellite communications link so that more data can be transferred per orbit. The goal of this thesis is to improve the performance of a low earth orbit satellite communication channel by varying certain parameters of the system, such as the protocol used, modulation scheme, packet size, transmission power etc. and then to observe how these parameters influence the system. The protocols that were chosen to be implemented are CSMA-CA, CSMA-CA with DSSS technology and Round-Robin Polling. A simulator for each protocol was designed with the Opnet platform, so that specific parameters could be changed and the results observed, in order to optimise the communications link between the satellite and ground stations. The results showed that there is no particular configuration of modulation scheme, packet size, transmission power etc. presenting the best overall solution for LEO satellite communications. It must be considered what the specific LEO satellite application would be used for and the characteristics required by that specific application. A suitable configuration must subsequently be chosen from the set of configurations available to satisfy most of the application requirements. / AFRIKAANSE OPSOMMING: ’n Satelliet met ’n lae wentelbaan kan gebruik word in verskeie kommunikasie toepassings waar fisiese verbindinge nie noodwendig moontlik is nie. Die kommunikasietyd van enige punt van aarde af na die satelliet, is minder as een uur per dag. Hierdie tyd word nog verder verklein omdat die satelliet besig is om, om die aarde te wentel. ’n Uur is glad nie baie tyd om data oor te dra nie en in realiteit is daar nog minder tyd beskikbaar as daar eksterne faktore op die sisteem inwerk. Dus is dit baie belangrik om die satelliet kommunikasiekanaal te optimiseer sodat soveel moontlik data as moontlik oorgedra kan word per omwenteling. Die doel van hierdie tesis is om die deurset van die kommunikasiekanaal van n lae wentelbaan satelliet te optimiseer, deur verskeie parameters te verander soos, protokol wat gebruik word, modulasie skema, pakkie grootte, transmissiekrag ens. en dan waar te neem hoe dit die sisteem beïnvloed. Die protokolle wat geïmplementeer is, is CSMA-CA, CSMA-CA met DSSS tegnologie en Round-Robin Polling. ’n Simulator vir elke protokol was ontwerp in die Opnet simulasie platform, sodat die spesifieke parameters verander kon word om die resultate te bestudeer met die doel om die kommunikasiekanaal tussen die satelliet en grond stasies optimaal te benut. Die resultate het bewys dat daar geen spesifieke konfigurasie van modulasie skema, pakkie grootte, transmissiekrag ens. is wat die algehele beste oplossing is nie. Die spesifieke applikasie waarvoor die lae wentelbaan satelliet gaan gebruik word moet geanaliseer word sowel as die spesifieke karakteristieke van daai applikasie. Daarvolgens moet n unieke konfigurasie opgestel word wat meeste van die applikasie se behoeftes bevredig.
3

Energy efficiency in LEO satellite and terrestrial wired environments / Efficacité de l'énergie dans les réseaux satellitaires LEO et environnements réseaux terrestres filaires

Hussein, Mohammed 13 June 2016 (has links)
Pour répondre à une demande, toujours croissante, des services multimédias avancés et pour supporter la connectivité électronique partout sur la planète, le développement de systèmes multimédias à large bande ubiquitaires gagne un grand intérêt aux niveaux académique et industriel. Les réseaux satellitaires en général et les constellations de satellites Low Earth Orbit (LEO) plus particulièrement jouent un rôle essentiel dans le déploiement de ces systèmes. Les constellations de satellites LEO telles que "Iridium" ou "Iridium-NEXT" sont extrêmement coûteuses à déployer et à maintenir. Par conséquent, le prolongement de la durée de leur vie est d'une importance cruciale. Dans la partie principale de cette thèse, nous proposons différentes techniques pour prolonger la durée de vie des services satellitaire dans les constellations de satellites LEO. Dans de telles constellations, les satellites peuvent passer plus de 30% de leur temps sous l'ombre de la Terre, temps pendant lequel ils sont alimentés par des batteries. Bien que les batteries soient rechargées par l'énergie solaire, la profondeur de décharge qu'elles atteignent pendant l'éclipse affecte considérablement leur durée de vie et, par extension, la durée de vie des satellites eux-mêmes. Pour des batteries du même type que celles qui alimentent les satellites "Iridium" et "Iridium-NEXT", une augmentation de 15% de la profondeur de décharge peut pratiquement réduire leur durée de vie de moitié. En raison de la nature très uniforme et symétrique des constellations de satellites LEO, il peut y avoir de nombreux chemins alternatifs entre deux noeuds d'un réseau de satellites. La décision relative à l'envoi de données sur un de ces chemins a un effet important sur la durée de vie du réseau. Dans ce contexte, nous nous concentrons tout d'abord sur le routage et nous proposons deux nouvelles métriques de routage, "LASER" et "SLIM", qui tentent de trouver un équilibre entre la performance et la profondeur de décharge de la batterie dans les constellations de satellites LEO. Notre approche de base est de tirer parti du mouvement déterministe des satellites pour favoriser le routage du trafic sur les satellites exposés au soleil plutôt que sur les satellites éclipsés, diminuant ainsi la moyenne de la profondeur de décharge de la batterie, le tout sans pénaliser les performances. Avec l'utilisation d'une topologie LEO réelle et des requêtes de trafic, nous montrons que LASER et SLIM peuvent augmenter la durée de vie de la batterie de près de 75 % et 100 %, respectivement. Ensuite, nous nous occupons de la consolidation des ressources, un nouveau paradigme pour la réduction de la consommation d'énergie. Il consiste à avoir un sous-ensemble, soigneusement sélectionné, de liens réseau à mettre en veille, et à utiliser le reste des liens pour transporter la quantité requise du trafic. Cela est possible sans causer des perturbations majeures aux activités du réseau, étant donné que les réseaux de communication sont conçus pour des périodes de pic de trafic, avec de la redondance, et des ressources surestimées. Comme solutions à ces problèmes, nous proposons deux méthodes différentes pour effectuer la consolidation des ressources dans les réseaux LEO. Premièrement, nous proposons une métrique sensible au trafic pour quantifier la qualité d'une topologie frugal, nommée "MLU". Le problème étant NP-difficile soumis à un seuil "MLU" donné, nous présentons deux heuristiques, "BASIC" et "SNAP", qui représentent différents compromis en termes de performances et de simplicité. Deuxièmement, nous proposons une nouvelle métrique légère n'utilisant pas de trafic pour quantifier la qualité d'une topologie frugal, nommée "ADI". Après avoir montré que le problème de minimisation de la consommation d'énergie d'un réseau LEO soumis à un seuil donné d'ADI est NP-difficile, nous proposons une heuristique nommé "AvOId" à résoudre. / To meet an ever-growing demand for advanced multimedia services and to support electronic connectivity anywhere on the planet, development of ubiquitous broadband multimedia systems is gaining a huge interest at both academic and industry levels. Satellite networks in general and LEO satellite constellations in particular will play an essential role in the deployment of such systems. Therefore, as LEO satellite constellations like Iridium or IridiumNEXT are extremely expensive to deploy and maintain, extending their service lifetimes is of crucial importance. In the main part of this thesis, we propose different techniques for extending satellite service life in LEO satellite constellations. Satellites in such constellations can spend over 30% of their time under the earth’s umbra, time during which they are powered by batteries. While the batteries are recharged by solar energy, the Depth of Discharge (DoD) they reach during eclipse significantly affects their lifetime – and by extension, the service life of the satellites themselves. For batteries of the type that power Iridium and Iridium-NEXT satellites, a 15% increase to the DoD can practically cut their service lives in half. We first focus on routing and propose two new routing metrics – LASER and SLIM – that try to strike a balance between performance and battery DoD in LEO satellite constellations. Our basic approach is to leverage the deterministic movement of satellites for favoring routing traffic over satellites exposed to the sun as opposed to the eclipsed satellites, thereby decreasing the average battery DoD– all without taking a significant penalty in performance. Then, we deal with resource consolidation – a new paradigm for the reduction of the power consumption. It consists in having a carefully selected subset of network links entering a sleep state, and use the rest to transport the required amount of traffic. This possible without causing major disruptions to network activities. Since communication networks are designed over the peak traffic periods, and with redundancy and over-provisioned in mind. As a remedy to these issues, we propose two different methods to perform resource consolidation in LEO networks. First, we propose trafficaware metric for quantifiying the quality of a frugal topology, the Maximum Link Utilization (MLU). With the problem being NP-hard subject to a given MLU threshold, we introduce two heuristics, BASIC and SNAP, which represent different tradeoffs in terms of performance and simplicity. Second, we propose a new lightweight traffic-agnostic metric for quantifiying the quality of a frugal topology, the Adequacy Index (ADI). After showing that the problem of minimizing the power consumption of a LEO network subject to a given ADI threshold is NP-hard, we propose a heuristc named AvOId to solve it. We evaluate both forms of resource consolidation using realistic LEO topologies and traffic requests. The results show that the simple schemes we develop are almost double the satellite batteries lifetime. Following the green networking in LEO systems, the second part of this thesis focuses on extending the resource consolidation schemes to current wired networks. Indeed, the energy consumption of wired networks has been traditionally overlooked. Several studies exhibit that the traffic load of the routers only has a small influence on their energy consumption. Hence, the power consumption in networks is strongly related to the number of active network elements. In this context, we extend the traffic-agnostic metric, ADI, to the wired networks. We model the problem subject to ADI threshold as NP-hard. Then, we propose two polynomial time heuristics – ABStAIn and CuTBAck. Although ABStAIn and CuTBAck are traffic unaware, we assess their behavior under real traffic loads from 3 networks, demonstrating that their performance are comparable to the more complex traffic-aware solutions proposed in the literature.
4

LEO Satellite Connectivity for flying vehicles

Chen, Jinxuan January 2023 (has links)
Compared with the terrestrial network (TN), which can only support limited covered areas, satellite communication (SC) can provide global coverage and high survivability in case of an emergency like an earthquake. Especially low-earth orbit (LEO) satellites, as a promising technology, which is integral to achieving the goal of global seamless coverage and reliable communication, catering to 6G’s communication requirements. Nevertheless, the swift movement of the LEO satellites poses a challenge: frequent handovers are inevitable, compromising the quality of service (QoS) of users and leading to discontinuous connectivity. Moreover, considering LEO satellite connectivity for different flying vehicles (FVs) when coexisting with ground terminals, an efficient satellite handover decision control and mobility management strategy is required to reduce the number of handovers and allocate resources that align with different user requirements. With the development of machine learning (ML) methods, which can greatly enhance system performance and automation, reinforcement learning (RL), as a sub-field in ML has been employed to optimize decision control. Due to the challenges of dimensionality explosion and the propensity for traditional Q-learning algorithms to get trapped in local minima, deep learning has been introduced with RL. In this thesis, the high-dimensionality user-satellite network is constructed including the LEO constellation from the ephemeris data, different types of flying vehicles such as aircraft and drones, and ground terminals. Two mathematical optimization models named the traditional low handover model and network utility model when considering the full criteria including the remaining visible time, downlink (DL) carrier-to-interference-plus-noise ratio (CINR) and the available idle channels are formulated. In this way, a novel satellite handover strategy based on Multi-Agent Reinforcement Learning (MARL) and game theory named Nash-SAC has been proposed to solve these problems. From the simulation results, compared with different benchmarks such as the traditional Q-learning algorithm, Maximum available channel (MAC)-based strategy, and Maximum instantaneous signal strength (MIS)-based strategy, Nash-SAC can effectively reduce the number of satellite handovers by over 16% close to the lower limit, and the blocking rate by over 18%. Moreover, Nash-SAC can greatly improve the network utility of the whole system by up to 48% and cater to different users’ requirements, providing reliable and robust connectivity for both FVs and ground terminals. / Jämfört med det markbundna nätet (TN), som endast kan stödja begränsade täckta områden, kan satellitkommunikation (SC) ge global täckning och hög överlevnad vid en nödsituation som en jordbävning. Speciellt lågjordiga satelliter (LEO), som en lovande teknik, som är integrerad för att uppnå målet om global sömlös täckning och tillförlitlig kommunikation, tillgodose 6G:s kommunikationskrav. Icke desto mindre utgör LEO-satelliternas snabba förflyttning en utmaning: täta överlämningar är oundvikliga, vilket äventyrar användarnas tjänstekvalitet och leder till kontinuerlig uppkoppling. Med tanke på LEO:s satellitanslutning för olika flygande fordon när de samexisterar med markterminaler krävs dessutom en effektiv strategi för kontroll av satellitöverlämning och mobilitetshantering för att minska antalet överlämningar och fördela resurser som överensstämmer med olika användarkrav. Med utvecklingen av maskininlärningsmetoder (ML), som avsevärt kan förbättra systemprestanda och automation, har förstärkningsinlärning (RL), som ett delområde i ML använts för att optimera beslutskontrollen. På grund av utmaningarna med dimensionsexplosion och benägenheten för traditionella Q-inlärningsalgoritmer att fastna i lokala minimi har djupinlärning introducerats med RL. I denna avhandling konstrueras det högdimensionella användarsatellitnätet inklusive LEO-konstellationen från ephemerisdata, olika typer av flygande fordon såsom flygplan och drönare samt markterminaler. Två matematiska optimeringsmodeller kallas den traditionella lågöverlämningsmodellen och nätverksbruksmodellen när man beaktar de fullständiga kriterierna inklusive återstående synliga tiden, nedlänk (DL) carrier-to-interferens-plus-noise ratio (CINR) och tillgängliga inaktiva kanaler formuleras. På detta sätt har en ny satellitöverlämningsstrategi baserad på Multi-Agent Reinforcement Learning (MARL) och spelteori vid namn Nash-SAC föreslagits för att lösa dessa problem. Från simuleringsresultaten, jämfört med olika riktmärken såsom den traditionella Q-learning algoritmen, Maximal available channel (MAC)-baserad strategi och Maximal instantaneous signalstyrka (MIS)-baserad strategi, kan Nash-SAC effektivt minska antalet satellitöverlämningar med över 16% nära den nedre gränsen och blockeringshastigheten med över 18%. Dessutom kan Nash-SAC avsevärt förbättra nätverksnyttan i hela systemet med upp till 48% och tillgodose olika användares krav, vilket ger tillförlitlig och robust anslutning för både flygande fordon och markterminaler.
5

Système M2M/IoT par satellite pour l'hybridation d'un réseau NB-IoT via une constellation LEO / M2M/IoT satellite system for the hybridization of a NB-IoT network via a LEO constellation

Cluzel, Sylvain 07 March 2019 (has links)
Le but de cette thèse est d'étudier la mise en œuvre de services de type Internet of Thing (IoT) ou Machine to Machine (M2M) par satellite. Ce type de système pose une double problématique: d'une part au niveau couche physique : les contraintes liées au terminal (limité en puissance, énergie, taille d'antenne), au canal (potentiellement avec masquage et multitrajet) et au segment spatial impliquent la mise en œuvre de différentes techniques (entrelacement, suppression d'interférents, ...) permettant d'assurer le bilan de liaison adéquat pour le service. D'autre part, le besoin d'offrir un accès à la ressource à un grand nombre de terminaux demandant un débit faible implique l'utilisation de techniques d'accès à contention optimisées, ainsi que la prise en compte au niveau accès des problématiques d'économie d'énergie. Cette couche accès doit également être en mesure de s'interfacer avec des architectures réseaux plus vastes. On peut citer par exemple les architectures Internet afin de supporter des services IP pour l'IoT, avec des notions de services intermittents, telles qu'on les retrouve dans les réseaux DTN, ou bien les architectures 4G/5G pour la mise en œuvre de services mobiles. Cette thèse va investiguer deux approches systèmes innovantes ainsi que différentes techniques aussi bien couche physique que couche accès (potentiellement couplée) permettant leur mise en œuvre. Le premier scénario système consiste à l'utilisation d'un terminal satellite relais très bas débit (contrairement au cas classique traité dans la littérature reposant sur des terminaux broadband), s'interfaçant avec des capteurs en technologie accès terrestres. Des techniques innovantes de gestion des ressources et d'économie d'énergie au travers d'une couche accès dédiée (non DVB) pourraient permettre de supporter le nombre très important de terminaux dans ce type de système. Le second scénario repose sur une communication directe avec des capteurs/objets via une constellation satellite. Cette approche pose le problème de l'efficacité de la forme d'onde pour des services extrêmement sporadique et de la fiabilisation de la communication. Il existe de nombreux travaux coté DLR sur ce type de forme d'onde avec notamment la définition de S-MIM. Néanmoins, cette solution semble complexe et de nombreuses optimisations pourraient être apportées. Coté accès, E-SSA (communication asynchrone à spectre étalé avec SIC) défini par l'ESA est également une piste de travail intéressante même si sa mise en œuvre au niveau système et sa complexité doivent être consolidées. / The aim of this thesis is to study the implementation of Internet-based services of Thing (IoT) and Machine to Machine (M2M) through a satellite link. This type of system have to deal with two issues: first the physical layer level: terminal related constraints (limited in power, energy, and antenna size), channel (potentially with masking and multipath) and the space segment involve the implementation of different techniques (interleaving, interference cancellation,) to ensure proper link budget allowing the communication. On the other hand , the need to provide access to the resource to a large number of terminals requiring low throughput involves the use of optimized contention access techniques , as well as taking into account the level of access issues energy saving. The access layer should also be able to interface with larger networks architectures. Internet architectures for example include supporting IP services for Iota, with sporadic services, such as the ones found in the DTN networks, or 4G architectures / 5G for the implementation of mobile services. This thesis will investigate two innovative approaches and different techniques as well as physical layer access layer (potentially coupled) to their implementation. The first scenario involves the use of a very low throughput satellite relay terminal (unlike in the conventional case found in the literature based on broadband terminals), interfacing with terrestrial access technology sensors. Innovative resource management and energy saving techniques through a dedicated access layer (not DVB) could absorb the large number of terminals in this type of architecture. The second scenario is based on direct communication with sensors / objects via satellite constellation. This approach raises the question of the efficiency of the waveform for extremely sporadic services and the reliability of communication. DLR works on this type of waveform including the definition of S -MIM. However, this solution seems to be complex and many optimizations can be made. From the access layer point of view, E -SSA (asynchronous spread spectrum communication with SIC) defined by the ESA is also interesting even if its implementation to the system and its complexity level should be consolidated.

Page generated in 0.0634 seconds