• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the LHCX light-harvesting complex protein family in diatom photoprotection / Rôle des protéines de la famille des antennes collectrices de lumière, LHCX, dans la photoprotection chez les diatomées

Taddei, Lucilla 25 July 2016 (has links)
Les diatomées constituent le principal groupe du phytoplancton dans les océans, contribuant à près de 20% de la production primaire globale. Dans leur environnement très variable, les diatomées sont particulièrement efficaces dans leur capacité à ajuster leur activité photosynthétique en dissipant sous forme de chaleur l’énergie lumineuse absorbée en excès, par un processus appelé le « Non-Photochemical Quenching of chlorophyll fluorescence », (NPQ). Chez la diatomée modèle, Phaeodactylum tricornutum, il a été montré que LHCX1, une protéine proche des antennes photosynthétiques, est impliquée dans le NPQ. Par des approches intrégrées de génétique, biologie moléculaire, biochimie, imagerie des cinétiques de fluorescence et spectroscopie ultrarapide, j’ai étudié le rôle de la famille des LHCX chez P. tricornutum. J’ai tout d’abord pu corréler une expression différentielle des 4 gènes LHCX de P. tricornutum avec différentes dynamiques de NPQ et activités photosynthétiques, dans différentes conditions de lumiére et nutriments. En localisant les LHCX dans les differents complexes photosynthétiques et les différents sites de dissipation d’énergie, j’ai pu proposer un modèle de régulation dynamique du NPQ impliquant à court terme principalement LHCX1 au niveau des centres réactionnels, et une autre isoforme, possiblement LHCX3, au niveau des antennes lors d’un stress lumineux prolongé. Enfin, par le criblage d’une série de mutants potentiellement dérégulés dans leur contenu en LHCXs, j’ai pu identifier des lignées avec un NPQ altéré qui pourront constituer des nouveaux outils de recherche. Dans l’ensemble ce travail de thèse a permis de mettre en évidence la diversification fonctionnelle et l’importance de la famille des LHCX dans la fine modulation des capacités de collecte de lumière et de photoprotection, expliquant sans doute en partie le succès des diatomées dans leur environnement très fluctuant. / Diatoms dominate phytoplanktonic communities in contemporary oceans, contributing to 20% of global primary productivity. In their extremely variable environment, diatoms are especially efficient in adjusting their photosynthetic activity by dissipating as heat the light energy absorbed in excess, through a process called “Non-Photochemical Quenching of chlorophyll fluorescence”, (NPQ). In the model diatom Phaeodactylum tricornutum, it has been shown that LHCX1, a photosynthetic antenna-related gene, is involved in the NPQ process. Through integrated approaches of genetics, molecular biology, biochemistry, study of the kinetics of chlorophyll fluorescence yields and ultrafast spectroscopy, I studied the role of the LHCX family in the photoprotection activity of P. tricornutum. I first correlated a differential regulation of the 4 P. tricornutum LHCX genes with different dynamics of NPQ and photosynthetic activity, in different light and nutrient conditions. By localizing the LHCXs in fractioned photosynthetic complexes and the different sites of energy dissipation, I was able to propose a model of dynamic regulation of NPQ capacity involving mainly the LHCX1 in the reaction centers, during short-term high light responses. During prolonged high light stress, the quenching occurs mainly in the antennas, potentially mediated by the LHCX3 isoform. Finally, using photosynthetic parameters, I screened a series of transgenic lines putatively deregulated in their LHCX amount, and I identified lines with altered NPQ, which could represent novel investigation tools. Altogether, this work highlighted the functional diversification and the importance of the LHCX protein family in the fine-tuning of light harvesting and photoprotection capacity, possibly contributing to explain diatoms success in their highly fluctuating environment.
2

Pre-purification of diatom pigment protein complexes provides insight into the heterogeneity of FCP complexes

Kansy, Marcel, Volke, Daniela, Sturm, Line, Wilhelm, Christian, Hoffmann, Ralf, Goss, Reimund 18 February 2022 (has links)
Background: Although our knowledge about diatom photosynthesis has made huge progress over the last years, many aspects about their photosynthetic apparatus are still enigmatic. According to published data, the spatial organization as well as the biochemical composition of diatom thylakoid membranes is significantly different from that of higher plants. Results: In this study the pigment protein complexes of the diatom Thalassiosira pseudonana were isolated by anion exchange chromatography. A step gradient was used for the elution process, yielding five well-separated pigment protein fractions which were characterized in detail. The isolation of photosystem (PS) core complex fractions, which contained fucoxanthin chlorophyll proteins (FCPs), enabled the differentiation between different FCP complexes: FCP complexes which were more closely associated with the PSI and PSII core complexes and FCP complexes which built-up the peripheral antenna. Analysis by mass spectrometry showed that the FCP complexes associated with the PSI and PSII core complexes contained various Lhcf proteins, including Lhcf1, Lhcf2, Lhcf4, Lhcf5, Lhcf6, Lhcf8 and Lhcf9 proteins, while the peripheral FCP complexes were exclusively composed of Lhcf8 and Lhcf9. Lhcr proteins, namely Lhcr1, Lhcr3 and Lhcr14, were identified in fractions containing subunits of the PSI core complex. Lhcx1, Lhcx2 and Lhcx5 proteins co-eluted with PSII protein subunits. The first fraction contained an additional Lhcx protein, Lhcx6_1, and was furthermore characterized by high concentrations of photoprotective xanthophyll cycle pigments. Conclusion: The results of the present study corroborate existing data, like the observation of a PSI-specific antenna complex in diatoms composed of Lhcr proteins. They complement other data, like e.g. on the protein composition of the 21 kDa FCP band or the Lhcf composition of FCPa and FCPb complexes. They also provide interesting new information, like the presence of the enzyme diadinoxanthin de-epoxidase in the Lhcx-containing PSII fraction, which might be relevant for the process of non-photochemical quenching. Finally, the high negative charge of the main FCP fraction may play a role in the organization and structure of the native diatom thylakoid membrane. Thus, the results present an important contribution to our understanding of the complex nature of the diatom antenna system.

Page generated in 0.0207 seconds