• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 65
  • 27
  • 1
  • Tagged with
  • 199
  • 199
  • 122
  • 99
  • 98
  • 92
  • 91
  • 76
  • 75
  • 71
  • 62
  • 56
  • 53
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Méthodes de reconstruction tridimensionnelle intégrant des points cycliques : application au suivi d'une caméra

Calvet, Lilian 23 January 2014 (has links) (PDF)
Cette thèse traite de la reconstruction tridimensionnelle d'une scène rigide à partir d'une collection de photographies numériques, dites vues. Le problème traité est connu sous le nom du "calcul de la structure et du mouvement" (structure-and/from-motion) qui consiste à "expliquer" des trajectoires de points dits d'intérêt au sein de la collection de vues par un certain mouvement de l'appareil (dont sa trajectoire) et des caractéristiques géométriques tridimensionnelles de la scène. Dans ce travail, nous proposons les fondements théoriques pour étendre certaines méthodes de calcul de la structure et du mouvement afin d'intégrer comme données d'entrée, des points d'intérêt réels et des points d'intérêt complexes, et plus précisément des images de points cycliques. Pour tout plan projectif, les points cycliques forment une paire de points complexes conjugués qui, par leur invariance par les similitudes planes, munissent le plan projectif d'une structure euclidienne. Nous introduisons la notion de marqueurs cycliques qui sont des marqueurs plans permettant de calculer sans ambiguïté les images des points cycliques de leur plan de support dans toute vue. Une propriété de ces marqueurs, en plus d'être très "riches" en information euclidienne, est que leurs images peuvent être appariées même si les marqueurs sont disposés arbitrairement sur des plans parallèles, grâce à l'invariance des points cycliques. Nous montrons comment utiliser cette propriété dans le calcul projectif de la structure et du mouvement via une technique matricielle de réduction de rang, dite de factorisation, de la matrice des données correspondant aux images de points réels, complexes et/ou cycliques. Un sous-problème critique abordé dans le calcul de la structure et du mouvement est celui de l'auto-calibrage de l'appareil, problème consistant à transformer un calcul projectif en un calcul euclidien. Nous expliquons comment utiliser l'information euclidienne fournie par les images des points cycliques dans l'algorithme d'auto-calibrage opérant dans l'espace projectif dual et fondé sur des équations linéaires. L'ensemble de ces contributions est finalement utilisé pour une application de suivi automatique de caméra utilisant des marqueurs formés par des couronnes concentriques (appelés CCTags), où il s'agit de calculer le mouvement tridimensionnel de la caméra dans la scène à partir d'une séquence vidéo. Ce type d'application est généralement utilisé dans l'industrie du cinéma ou de la télévision afin de produire des effets spéciaux. Le suivi de caméra proposé dans ce travail a été conçu pour proposer le meilleur compromis possible entre flexibilité d'utilisation et précision des résultats obtenus.
122

Techniques visuelles pour la détection et le suivi d'objets 2D

Sekkal, Rafiq 28 February 2014 (has links) (PDF)
De nos jours, le traitement et l'analyse d'images trouvent leur application dans de nombreux domaines. Dans le cas de la navigation d'un robot mobile (fauteuil roulant) en milieu intérieur, l'extraction de repères visuels et leur suivi constituent une étape importante pour la réalisation de tâches robotiques (localisation, planification, etc.). En particulier, afin de réaliser une tâche de franchissement de portes, il est indispensable de détecter et suivre automatiquement toutes les portes qui existent dans l'environnement. La détection des portes n'est pas une tâche facile : la variation de l'état des portes (ouvertes ou fermées), leur apparence (de même couleur ou de couleur différentes des murs) et leur position par rapport à la caméra influe sur la robustesse du système. D'autre part, des tâches comme la détection des zones navigables ou l'évitement d'obstacles peuvent faire appel à des représentations enrichies par une sémantique adaptée afin d'interpréter le contenu de la scène. Pour cela, les techniques de segmentation permettent d'extraire des régions pseudo-sémantiques de l'image en fonction de plusieurs critères (couleur, gradient, texture...). En ajoutant la dimension temporelle, les régions sont alors suivies à travers des algorithmes de segmentation spatio-temporelle. Dans cette thèse, des contributions répondant aux besoins cités sont présentées. Tout d'abord, une technique de détection et de suivi de portes dans un environnement de type couloir est proposée : basée sur des descripteurs géométriques dédiés, la solution offre de bons résultats. Ensuite, une technique originale de segmentation multirésolution et hiérarchique permet d'extraire une représentation en régions pseudo-sémantique. Enfin, cette technique est étendue pour les séquences vidéo afin de permettre le suivi des régions à travers le suivi de leurs contours. La qualité des résultats est démontrée et s'applique notamment au cas de vidéos de couloir.
123

Analyse sémantique des images en temps-réel avec des réseaux convolutifs

Farabet, Clément 19 December 2013 (has links) (PDF)
Une des questions centrales de la vision informatique est celle de la conception et apprentissage de représentations du monde visuel. Quel type de représentation peut permettre à un système de vision artificielle de détecter et classifier les objects en catégories, indépendamment de leur pose, échelle, illumination, et obstruction. Plus intéressant encore, comment est-ce qu'un tel système peut apprendre cette représentation de façon automatisée, de la même manière que les animaux et humains parviennent à émerger une représentation du monde qui les entoure. Une question liée est celle de la faisabilité calculatoire, et plus précisément celle de l'efficacité calculatoire. Étant donné un modèle visuel, avec quelle efficacité peut-il être entrainé, et appliqué à de nouvelles données sensorielles. Cette efficacité a plusieurs dimensions: l'énergie consommée, la vitesse de calcul, et l'utilisation mémoire. Dans cette thèse je présente trois contributions à la vision informatique: (1) une nouvelle architecture de réseau convolutif profond multi-échelle, permettant de capturer des relations longue distance entre variables d'entrée dans des données type image, (2) un algorithme à base d'arbres permettant d'explorer de multiples candidats de segmentation, pour produire une segmentation sémantique avec confiance maximale, (3) une architecture de processeur dataflow optimisée pour le calcul de réseaux convolutifs profonds. Ces trois contributions ont été produites dans le but d'améliorer l'état de l'art dans le domain de l'analyse sémantique des images, avec une emphase sur l'efficacité calculatoire. L'analyse de scènes (scene parsing) consiste à étiqueter chaque pixel d'une image avec la catégorie de l'objet auquel il appartient. Dans la première partie de cette thèse, je propose une méthode qui utilise un réseau convolutif profond, entrainé à même les pixels, pour extraire des vecteurs de caractéristiques (features) qui encodent des régions de plusieurs résolutions, centrées sur chaque pixel. Cette méthode permet d'éviter l'usage de caractéristiques créées manuellement. Ces caractéristiques étant multi-échelle, elles permettent au modèle de capturer des relations locales et globales à la scène. En parallèle, un arbre de composants de segmentation est calculé à partir de graphe de dis-similarité des pixels. Les vecteurs de caractéristiques associés à chaque noeud de l'arbre sont agrégés, et utilisés pour entrainé un estimateur de la distribution des catégories d'objets présents dans ce segment. Un sous-ensemble des noeuds de l'arbre, couvrant l'image, est ensuite sélectionné de façon à maximiser la pureté moyenne des distributions de classes. En maximisant cette pureté, la probabilité que chaque composant ne contienne qu'un objet est maximisée. Le système global produit une précision record sur plusieurs benchmarks publics. Le calcul de réseaux convolutifs profonds ne dépend que de quelques opérateurs de base, qui sont particulièrement adaptés à une implémentation hardware dédiée. Dans la deuxième partie de cette thèse, je présente une architecture de processeur dataflow dédiée et optimisée pour le calcul de systèmes de vision à base de réseaux convolutifs--neuFlow--et un compilateur--luaFlow--dont le rôle est de compiler une description haut-niveau (type graphe) de réseaux convolutifs pour produire un flot de données et calculs optimal pour l'architecture. Ce système a été développé pour faire de la détection, catégorisation et localisation d'objets en temps réel, dans des scènes complexes, en ne consommant que 10 Watts, avec une implémentation FPGA standard.
124

De la segmentation au moyen de graphes d'images de muscles striés squelettiques acquises par RMN

Baudin, Pierre-Yves 23 May 2013 (has links) (PDF)
La segmentation d'images anatomiques de muscles striés squelettiques acquises par résonance magnétique nucléaire (IRM) présente un grand intérêt pour l'étude des myopathies. Elle est souvent un préalable nécessaire pour l'étude les mécanismes d'une maladie, ou pour le suivi thérapeutique des patients. Cependant, le détourage manuel des muscles est un travail long et fastidieux, au point de freiner les recherches cliniques qui en dépendent. Il est donc nécessaire d'automatiser cette étape. Les méthodes de segmentation automatique se basent en général sur les différences d'aspect visuel des objets à séparer et sur une détection précise des contours ou de points de repère anatomiques pertinents. L'IRM du muscle ne permettant aucune de ces approches, la segmentation automatique représente un défi de taille pour les chercheurs. Dans ce rapport de thèse, nous présentons plusieurs méthodes de segmentation d'images de muscles, toutes en rapport avec l'algorithme dit du marcheur aléatoire (MA). L'algorithme du MA, qui utilise une représentation en graphe de l'image, est connu pour être robuste dans les cas où les contours des objets sont manquants ou incomplets et pour son optimisation numérique rapide et globale. Dans sa version initiale, l'utilisateur doit d'abord segmenter de petites portions de chaque région de l'image, appelées graines, avant de lancer l'algorithme pour compléter la segmentation. Notre première contribution au domaine est un algorithme permettant de générer et d'étiqueter automatiquement toutes les graines nécessaires à la segmentation. Cette approche utilise une formulation en champs aléatoires de Markov, intégrant une connaissance à priori de l'anatomie et une détection préalable des contours entre des paires de graines. Une deuxième contribution vise à incorporer directement la connaissance à priori de la forme des muscles à la méthode du MA. Cette approche conserve l'interprétation probabiliste de l'algorithme original, ce qui permet de générer une segmentation en résolvant numériquement un grand système linéaire creux. Nous proposons comme dernière contribution un cadre d'apprentissage pour l'estimation du jeu de paramètres optimaux régulant l'influence du terme de contraste de l'algorithme du MA ainsi que des différents modèles de connaissance à priori. La principale difficulté est que les données d'apprentissage ne sont pas entièrement supervisées. En effet, l'utilisateur ne peut fournir qu'une segmentation déterministe de l'image, et non une segmentation probabiliste comme en produit l'algorithme du MA. Cela nous amène à faire de la segmentation probabiliste optimale une variable latente, et ainsi à formuler le problème d'estimation sous forme d'une machine à vecteurs de support latents (latent SVM). Toutes les méthodes proposées sont testées et validées sur des volumes de muscles squelettiques acquis par IRM dans un cadre clinique.
125

La rétro-conception de composants mécaniques par une approche "concevoir pour fabriquer" / Reverse engineering for manufacturing (REFM)

Ali, Salam 01 July 2015 (has links)
Le processus de rétro-conception (RC), dans la littérature, permet de retrouver un modèle CAO pauvrement paramétré, les modifications sont difficilement réalisables. C’est à partir de ce dernier et d’un logiciel FAO (Fabrication Assistée par Ordinateur) qu’une gamme de fabrication est générée. Cette thèse propose une méthodologie de RC de composants mécaniques dans un contexte de fabrication, nommée « Reverse Engineering For Manufacturing ». Une gamme de fabrication incluant les informations de type opérations d’usinage, posages, phases… est obtenue. Une fois cette gamme générée, elle sera stockée afin d’être réutilisée sur des cas similaires. L’intégration des contraintes métier dans le processus de RC fait penser aux concepts de Design For Manufacturing (DFM) et Knowledge Based Engineering (KBE). La réutilisation de stratégies d’usinage afin de supporter le contexte récurrent fait penser aux travaux sur le « Shape Matching ». En effet, des travaux sur les descripteurs topologiques permettent de reconnaitre, après numérisation, la nature d’une pièce et ainsi appliquer une stratégie d’usinage existante. Cette thèse propose donc un rapprochement entre deux domaines de recherches: la reconnaissance de formes (Shape Matching) et les méthodologies de gestion des données techniques (DFM et KBE). Cette thèse vise à proposer une nouvelle approche de RC dans un contexte d’usinage, et à développer un démonstrateur de RC qui permet de gérer les aspects récurrents de la RC en réutilisant des cas d’études connus / Reverse Engineering (RE) process, in the literature, allows to find a poorly parametrized CAD model, the changes are very difficult. It is from this CAD model and a CAM (Computer Aided Manufacturing) software that a CAPP (Computer Aided Process Planning) model is generated. This thesis proposes a RE methodology of mechanical components in a manufacturing context, called “Reverse Engineering For Manufacturing”. A CAPP model including information like machining operations, fixtures, steps… is obtained. Once this CAPP generated, it will be stored for reuse in similar cases.The integration of design intents in the RE process requires the use of Design For Manufacturing (DFM) and Knowledge Based Engineering (KBE) concepts. The reuse of machining strategies to support the recurrent context requires the use of Shape Matching works. Indeed, works on topological descriptors allow to recognize, after scanning, the nature of a part and thus apply an existing machining strategy. This thesis proposes to combine two research domains: Shape Matching and technical data management methodologies (DFM and KBE). This thesis aims to propose a new RE approach in a machine context, and to develop a RE viewer for managing recurrent aspects of RE by reusing known case studies
126

One-class classification for cyber intrusion detection in industrial systems / Classification mono-classe pour la détection des cyber-intrusions dans les systèmes industriels

Nader, Patric 24 September 2015 (has links)
La sécurité des infrastructures critiques a suscité l'attention des chercheurs récemment avec l'augmentation du risque des cyber-attaques et des menaces terroristes contre ces systèmes. La majorité des infrastructures est contrôlée par des systèmes SCADA (Supervisory Control And Data Acquisition) permettant le contrôle à distance des processus industriels, comme les réseaux électriques, le transport de gaz, la distribution d'eau potable, les centrales nucléaires, etc. Les systèmes traditionnels de détection d'intrusions sont incapables de détecter les nouvelles attaques ne figurant pas dans leurs bases de données. L'objectif de cette thèse est d'apporter une aide supplémentaire à ces systèmes pour assurer une meilleure protection contre les cyber-attaques.La complexité et la diversité des attaques rendent leur modélisation difficile. Pour surmonter cet obstacle, nous utilisons des méthodes d'apprentissage statistique mono-classes. Ces méthodes élaborent une fonction de décision à partir de données d'apprentissage, pour classer les nouveaux échantillons en données aberrantes ou données normales. La fonction de décision définie l’enveloppe d’une région de l’espace de données contenant la majeure partie des données d’apprentissage. Cette thèse propose des méthodes de classification mono-classe, des formulations parcimonieuses de ces méthodes, et une méthode en ligne pour la détection temps réel. Les performances de ces méthodes sont montrées sur des données benchmark de différents types d’infrastructures critiques / The security of critical infrastructures has been an interesting topic recently with the increasing risk of cyber-attacks and terrorist threats against these systems. The majority of these infrastructures is controlled via SCADA (Supervisory Control And Data Acquisition) systems, which allow remote monitoring of industrial processes such as electrical power grids, gas pipelines, water distribution systems, wastewater collection systems, nuclear power plants, etc. Traditional intrusion detection systems (IDS) cannot detect new types of attacks not listed in their databases, so they cannot ensure maximum protection for these infrastructures.The objective of this thesis is to provide additional help to IDS to ensure better protection for industrial systems against cyber-attacks and intrusions. The complexity of studied systems and the diversity of attacks make modeling these attacks very difficult. To overcome this difficulty, we use machine learning, especially one-class classification. Based on training samples, these methods develop decision rules to classify new samples as outliers or normal ones. This dissertation proposes specific one-class classification approaches, sparse formulations of these approaches, and an online approach to improve the real-time detection. The relevance of these approaches is illustrated on benchmark data from three different types of critical infrastructures
127

MMD and Ward criterion in a RKHS : application to Kernel based hierarchical agglomerative clustering / Maximum Dean Discrepancy et critère de Ward dans un RKHS : application à la classification hierarchique à noyau

Li, Na 01 December 2015 (has links)
La classification non supervisée consiste à regrouper des objets afin de former des groupes homogènes au sens d’une mesure de similitude. C’est un outil utile pour explorer la structure d’un ensemble de données non étiquetées. Par ailleurs, les méthodes à noyau, introduites initialement dans le cadre supervisé, ont démontré leur intérêt par leur capacité à réaliser des traitements non linéaires des données en limitant la complexité algorithmique. En effet, elles permettent de transformer un problème non linéaire en un problème linéaire dans un espace de plus grande dimension. Dans ce travail, nous proposons un algorithme de classification hiérarchique ascendante utilisant le formalisme des méthodes à noyau. Nous avons tout d’abord recherché des mesures de similitude entre des distributions de probabilité aisément calculables à l’aide de noyaux. Parmi celles-ci, la maximum mean discrepancy a retenu notre attention. Afin de pallier les limites inhérentes à son usage, nous avons proposé une modification qui conduit au critère de Ward, bien connu en classification hiérarchique. Nous avons enfin proposé un algorithme itératif de clustering reposant sur la classification hiérarchique à noyau et permettant d’optimiser le noyau et de déterminer le nombre de classes en présence / Clustering, as a useful tool for unsupervised classification, is the task of grouping objects according to some measured or perceived characteristics of them and it has owned great success in exploring the hidden structure of unlabeled data sets. Kernel-based clustering algorithms have shown great prominence. They provide competitive performance compared with conventional methods owing to their ability of transforming nonlinear problem into linear ones in a higher dimensional feature space. In this work, we propose a Kernel-based Hierarchical Agglomerative Clustering algorithms (KHAC) using Ward’s criterion. Our method is induced by a recently arisen criterion called Maximum Mean Discrepancy (MMD). This criterion has firstly been proposed to measure difference between different distributions and can easily be embedded into a RKHS. Close relationships have been proved between MMD and Ward's criterion. In our KHAC method, selection of the kernel parameter and determination of the number of clusters have been studied, which provide satisfactory performance. Finally an iterative KHAC algorithm is proposed which aims at determining the optimal kernel parameter, giving a meaningful number of clusters and partitioning the data set automatically
128

Identification automatisée des espèces d'arbres dans des scans laser 3D réalisés en forêt / Automatic recognition of tree species from 3D point clouds of forest plots

Othmani, Ahlem 26 May 2014 (has links)
L’objectif de ces travaux de thèse est la reconnaissance automatique des espèces d’arbres à partir de scans laser terrestres, information indispensable en inventaire forestier. Pour y répondre, nous proposons différentes méthodes de reconnaissance d’espèce basées sur la texture géométrique 3D des écorces.Ces différentes méthodes utilisent la séquence de traitement suivante : une étape de prétraitement, une étape de segmentation, une étape d’extraction des caractéristiques et une dernière étape de classification. Elles sont fondées sur les données 3D ou bien sur des images de profondeur extraites à partir des nuages de points 3D des troncs d’arbres en utilisant une surface de référence.Nous avons étudié et testé différentes approches de segmentation sur des images de profondeur représentant la texture géométrique de l'écorce. Ces approches posent des problèmes de sur-Segmentation et d'introduction de bruit. Pour cette raison, nous proposons une nouvelle approche de segmentation des nuages de points 3D : « Burst Wind Segmentation », inspirée des lignes de partage des eaux. Cette dernière réussit, dans la majorité des cas, à extraire des cicatrices caractéristiques qui sont ensuite comparées à un dictionnaire des cicatrices (« ScarBook ») pour discriminer les espèces d’arbres.Une grande variété de caractéristiques est extraite à partir des régions segmentées par les différentes méthodes proposées. Ces caractéristiques représentent le niveau de rugosité, la forme globale des régions segmentées, la saillance et la courbure du contour, la distribution des points de contour, la distribution de la forme selon différents angles,...Enfin, pour la classification des caractéristiques visuelles, les forêts aléatoires (Random Forest) de Leo Breiman et Adèle Cutler sont utilisées dans une approche à deux étapes : sélection des variables importantes, puis classification croisée avec les variables retenues, seulement.L’écorce de l’arbre change avec l'accroissement en diamètre ; nous avons donc étudié différents critères de variabilité naturelle et nous avons testé nos approches sur une base qui présente cette variabilité. Le taux de bonne classification dépasse 96% dans toutes les approches de segmentation proposées mais les meilleurs résultats sont atteints avec la nouvelle approche de segmentation « Burst Wind Segmentation » étant donné que cette approche réussit mieux à extraire les cicatrices, utilise un dictionnaire de cicatrices et a été évaluée sur une plus grande variété de caractéristiques de forme, de courbure, de saillance et de rugosité. / The objective of the thesis is the automatic recognition of tree species from Terrestrial LiDAR data. This information is essential for forest inventory. As an answer, we propose different recognition methods based on the 3D geometric texture of the bark.These methods use the following processing steps: a preprocessing step, a segmentation step, a feature extraction step and a final classification step. They are based on the 3D data or on depth images built from 3D point clouds of tree trunks using a reference surface.We have investigated and tested several segmentation approaches on depth images representing the geometric texture of the bark. These approaches have the disadvantages of over segmentation and are quite sensitive to noises. For this reason, we propose a new 3D point cloud segmentation approach inspired by the watershed technique that we have called «Burst Wind Segmentation». Our approach succeed in extracting in most cases the characteristic scars that are next compared to those stored in a dictionary («ScarBook») in order to determine the tree species.A large variety of characteristics is extracted from the regions segmented by the different methods proposed. These characteristics are the roughness, the global shape of the segmented regions, the saliency and the curvature of the contour, the distribution of the contour points, the distribution of the shape according to the different orientations.Finally, for the classification of the visual characteristics, the Random Forest method by Leo Breiman and Adèle Cutler is used in a two steps approach: selection of the most important variables and cross classification with the selected variables.The bark of the tree changes with the trunk diameter. We have thus studied different natural variability criteria and we have tested our approaches on a test set that includes this variability. The accuracy rate is over 96% for all the proposed segmentation approaches but the best result is obtained with the «Burst Wind Segmentation» one due to the fact that this approach can better extract the scars, it uses a dictionary of scars for recognition, and it has been evaluated on a greater variety of shapes, curvatures, saliency and roughness.
129

Vers un système de vision auto-adaptatif à base de systèmes multi-agents. / Towards an auto-adaptive vision system based on multi-agents systems.

Mahdjoub, Jason 15 December 2011 (has links)
Il existe une multitude de traitements d'images dans la littérature, chacun étant adapté à un ensemble plus ou moins grand de cadres d'application. Les traitements d'images sont fondamentalement trop différents les uns par rapport aux autres pour être mis en commun de façon naturelle. De plus, ces derniers sont trop rigides pour pouvoir s'adapter d'eux mêmes lorsqu'un problème non prévu à l'avance par le concepteur apparaît. Or la vision est un phénomène autoadaptatif, qui sait traiter en temps réel des situations singulières, en y proposant des traitements particuliers et adaptés. Elle est aussi un traitement complexe des informations, tant ces dernières ne peuvent être réduites à des représentations réductionnistes et simplifiantes sans être mutilées.Dans cette thèse, un système de vision est entrepris comme un tout où chaque partie est adaptée à l'autre, mais aussi où chaque partie ne peut s'envisager sans l'autre dans les tensions les plus extrêmes générées par la complexité et l'intrication des informations. Puisque chaque parcelle d'information joue un rôle local dans la vision, tout en étant dirigée par un objectif global peu assimilable à son niveau, nous envisageons la vision comme un système où chaque agent délibère selon une interférence produite par le potentiel décisionnel de chacun de ses voisins. Cette délibération est entreprise comme le résultat produit par l'interférence d'une superposition de solutions. De cette manière, il émerge du système à base d'agents une décision commune qui dirige les actions locales faites par chaque agent ou chaque partie du système. En commençant par décrire les principales méthodes de segmentation ainsi que les descripteurs de formes, puis en introduisant les systèmes multi-agents dans le domaine de l'image, nous discutons d'une telle approche où la vision est envisagée comme un système multi-agent apte à gérer la complexité inhérente de l'information visuelle tant en représentation qu'en dynamisme systémique. Nous encrons dans ces perspectives deux modèles multi-agents. Le premier modèle traite de la segmentation adaptative d'images sans calibration manuelle par des seuils. Le deuxième modèle traite de la représentation de formes quelconques à travers la recherche de coefficients d'ondelettes pertinents. Ces deux modèles remplissent des critères classiques liés au traitement d'images, et à la reconnaissance de formes, tout en étant des cas d'études à développer pour la recherche d'un système de vision auto-adaptatif tel que nous le décrivons. / Although several image processing approaches exist, each of them was introduced in order to be used in a specific set of applications. In fact, image processing algorithms are fundamentally too different in order to be merged in a natural way. Moreover, due to their rigidity, they are unable to adapt themselves when a non-previously programmed problem appears as it could be the case in our framework. Indeed vision is an auto-adaptive phenomenon which can deal with singular situations by providing particular and adapted treatments. It is also a complex information processing. Therefore, vision should not be reduced to reductionist and simplifying representation. According to this thesis, a vision system could be developed as a whole in which each part adapts itself with others. Its parts cannot be considered separately due to the extreme tensions generated by the complexity and the intricacy of information. Each of them contributes locally to the vision and it is directed by a global objective incomprehensible at its level. We consider vision as a system whose agents deliberate according to an interference produced by the decision potential of each agent. This deliberation is undertaken as the result produced by interferences of a solution superposition. Then, it emerges from the agent-based system a common decision which directs local actions of each agent or of each part of the system. After describing the main shape descriptors and segmentation algorithms and after introducing multi-agent systems on the image processing domain, we discuss on approaches for which vision is considered as a multi-agent system able to manage the inherent complexity of visual information. Then, we give two multi-agent models. The first one deals with an adaptive segmentation which doesn't need manual calibration through thresholds. The second one deals with shape representations through the search of pertinent wavelet coefficients. These two models respect classical image processing criteria. They also are case studies that should be developed in the search of an auto-adaptive vision system.
130

Extraction des paramètres et classification dynamique dans le cadre de la détection et du suivi de défaut de roulements / Extraction of new features and integration of dynamic classification to improve bearing fault monitoring

Kerroumi, Sanaa 21 October 2016 (has links)
Parmi les techniques utilisées en maintenance, l'analyse vibratoire reste l'outil le plus efficace pour surveiller l'état interne des machines tournantes en fonctionnement. En effet l'état de chaque composant constituant la machine peut être caractérisé par un ou plusieurs indicateurs de défaut issus de l'analyse vibratoire. Le suivi de ces indicateurs permet de détecter la présence d'un défaut et même de le localiser. Cependant, l'évolution de ces indicateurs peut être influencée par d'autres paramètres comme la variation de charge, la vitesse de rotation ou le remplacement d'un composant. Cela peut provoquer des fausses alarmes et remettre en question la fiabilité du diagnostic. Cette thèse a pour objectif de combiner l'analyse vibratoire avec la méthode de reconnaissance des formes afin d'une part d'améliorer la détection de défaut des composants en particulier le défaut de roulement et d'autre part de mieux suivre l'évolution de la dégradation pour caractériser le degré de sévérité du défaut. Pour cela nous avons développé des méthodes de classification dynamique pour prendre en compte l'évolution du système. Les observations à classifier sont constituées d'indicateurs de défauts et des combinaisons linéaires de ceux-ci. La démarche de la reconnaissance des formes dynamique consiste à extraire, à sélectionner et à classifier ces observations de façon continue. Trois méthodes de classification dynamiques ont été développées durant cette thèse : le « Dynamic DBSCAN » qui la première version dynamique de DBSCAN développée pour pouvoir suivre les évolutions des classes, « Evolving scalable DBSCAN » ESDBSCAN qui représente une version en ligne et évolutive de DBSCAN et finalement « Dynamic Fuzzy Scalabale DBSCAN » DFSDBSCAN qui est une version dynamique et floue de la méthode de classification ESDBSCAN adaptée pour un apprentissage en ligne. Ces méthodes distinguent les variations des observations liées au changement du mode de fonctionnement de la machine (variation de vitesse ou de charges) et les variations liées au défaut. Ainsi, Elles permettent de détecter, de façon précoce, l'apparition d'un défaut qui se traduit par la création d'une nouvelle classe dite classe dégradée et de suivre l'évolution de celle-ci. Cette méthodologie permettrait d'améliorer l'estimation de la durée de vie résiduelle du composant en analysant la distance séparant la classe "saine" et "dégradée". L'application sur des données réelles a permis d'identifier les différents états du roulement au cours temps (sain ou normal, défectueux) et l'évolution des observations liée à la variation de vitesse et au changement de charges avec un taux d'erreur faible et d'établir un diagnostic fiable. Afin de caractériser le degré de précocité du diagnostic des méthodes développées nous avons comparé ces résultats avec ceux établis par des méthodes classiques de détection. Cette comparaison nous a montré que les méthodes proposées permettent un diagnostic plus précoce et plus fiable.Mots clés : Diagnostic et suivi, roulements, méthodes de reconnaissance des formes, apprentissage en ligne, classification dynamique, analyse vibratoire, DFSDBSCAN, ESDBSCAN, DDBSCAN. / Various techniques can be used in rotating machines condition based maintenance. Among which vibration analysis remains the most popular and most effective tool for monitoring the internal state of an operating machine. Through vibration analysis, the state of each component constituting the machine can be characterized by one or more fault indicators. Monitoring these indicators can be used to detect the presence of a defect or even locate it. However, the evolution of these indicators can be influenced by other parameters than defect such as the variation of load, speed or replacement of a component. So counting solely on the evolution of these fault indicators to diagnose a machine can cause false alarms and question the reliability of the diagnosis.In this thesis, we combined vibration analysis tools with pattern recognition method to firstly improve fault detection reliability of components such as bearings, secondly to assess the severity of degradation by closely monitor the defect growth and finally to estimate their remaining useful life. For these reasons, we have designed a pattern recognition process capable of; identifying defect even in machines running under non stationary conditions, processing evolving data of an evolving system and can handle an online learning. This process will have to decide the internal state of the machine using only faults indicators or linear combinations of fault indicators.The process of pattern recognition of dynamic forms consists of extracting and selecting useful information, classify these observations continuously into their right classes then decide on an action according to the observations' class.Three dynamic classification methods have been developed during this thesis: Dynamic DBSCAN that was developed to capitalize on the time evolution of the data and their classes, Evolving Scalable DBSCAN (ESDBSCAN) that was created to overcome the shortcoming of DDBSCAN in online processing and finally Dynamic Fuzzy Scalable DBSCAN (DFSDBSCAN); a dynamic fuzzy and semi-supervised version of ESDBSCAN. These methods can detect the observations evolution and identify the nature of the change causing it; either if it's a change in operating mode of the machine (speed variation or load) or a change related to the defect.With these techniques we were are able to enhance the reliability of fault detection by identifying the origin of the fault indicators evolution. An evolution caused by an alteration of the operating mode and changes caused by defect result in two different types of classes evolution (the appearance of a new class we named it 'defected' in case of defect or a drift otherwise). Not only that but these techniques helped us enhance the precocity of the fault detection and estimate the remaining useful life of the monitored component as well by analyzing the distance separating the class 'healthy' and 'defected'.The application of the designed process on real data helped us prove the legitimacy of the proposed techniques in identifying the different states of bearings over time (healthy or normal, defective) and the origin of the observations' evolution with a low error rate, a reliable diagnosis and a low memory occupation.Keywords: Diagnosis and monitoring, bearings, pattern recognition, learning, dynamic classification, Vibration Analysis, DFSDBSCAN, ESDBSCAN, DDBSCAN

Page generated in 0.0899 seconds