• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 65
  • 27
  • 1
  • Tagged with
  • 199
  • 199
  • 122
  • 99
  • 98
  • 92
  • 91
  • 76
  • 75
  • 71
  • 62
  • 56
  • 53
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Détection de comportements à travers des modèles multi-agents collaboratifs, appliquée à l'évaluation de la situation, notamment en environnement asymétrique avec des données imprécises et incertaines

Patrix, Jérémy 12 December 2013 (has links) (PDF)
Ce manuscrit de thèse présente une méthode innovante brevetée pour la détection de comportements collectifs. En utilisant des procédés de fusion sur les données issues d'un réseau multi-capteurs, les récents systèmes de surveillance obtiennent les séquences d'observations des personnes surveillées. Ce bas niveau d'évaluation de la situation a été mesuré insuffisant pour aider les forces de sécurité lors des événements de foule. Afin d'avoir une plus haute évaluation de la situation dans ces environnements asymétriques, nous proposons une approche multi-agents qui réduit la complexité du problème par des agents sur trois niveaux - macro, méso et micro - d'observations. Nous utilisons un nouvel état relatif dans les approches de l'état de l'art pour nous permettre la détection, en temps réel, des groupes, de leurs comportements, objectifs et intentions. Dans le cadre de projets européens, nous avons utilisé un serious game simulant une foule dans des scénarios asymétriques. Les résultats montrent un meilleur accord avec les prédictions théoriques et une amélioration significative des travaux précédents. Le travail présenté ici pourrait être utilisé dans de futures études de détection de comportements multi-agents et pourrait un jour aider à résoudre les problèmes liés aux événements catastrophiques de foules incontrôlables.
182

Stéréophotométrie non-calibrée de surfaces non-Lambertiennes. Application à la reconstruction de surface de colonies microbiennes

Kyrgyzova, Khrystyna 22 July 2014 (has links) (PDF)
La thèse est dédiée au problème de la stéréophotométrie non-Lambertienne sans connaissance a priori sur les conditions d'illumination et son application aux images de boîte de Pétri. Pour obtenir une bonne reconstruction de surfaces non-Lambertiennes, il est proposé de traiter une séquence d'entrée en deux étapes: premièrement il faut supprimer les effets spéculaires et obtenir ainsi des images de surface 'pseudo-Lambertienne'. Ensuite dans une deuxième étape à partir de ces images une reconstruction stéréophotométrique Lambertienne sans aucune information préalable sur les directions d'illumination est effectuée. Dans ce travail nous proposons deux méthodes originales respectivement pour la suppression de spécularités et la reconstruction de surface sans information a priori. Les méthodes proposées sont appliquées pour la caractérisation des colonies microbiennes.La spécularités est un effet optique lié à la nature physique complexe des objets. Il est utile pour la perception humaine des objets 3D mais il gêne le processus de traitement automatique d'images. Pour pouvoir appliquer le modèle Lambertien à la stéréophotométrie, les spécularités doivent être supprimées des images d'entrée. Nous proposons donc une méthode originale pour la correction des zones spéculaires adaptée pour une reconstruction ultérieure. L'algorithme proposé est capable de détecter les spécularités comme des valeurs anormalement élevées d'intensité dans une image de la séquence d'entrée, et de les corriger en utilisant les informations des autres images de la séquence et une fonction de correction continue. Cette méthode permet de faire la suppression des spécularités en préservant toutes les autres particularités de distribution de lumière qui sont importantes pour la reconstruction de surface.Après nous proposons une technique de reconstruction stéréophotométrique de surface Lambertienne sans connaissance a priori sur l'illumination. Le modèle mis en œuvre consiste en quatre composantes, deux composantes (albédo et normales) permettent de d'écrire des propriétés de surface et deux autres (intensités des sources de lumière et leurs directions) décrivent illumination. L'algorithme proposé de reconstruction utilise le principe de l'optimisation alternée. Chaque composante du modèle est trouvée itérativement en fixant toutes les variables sauf une et en appliquant des contraintes de structures, valeurs et qualité pour la fonction d'optimisation. Un schéma original de résolution permet de séparer les différents types d'information inclus dans les images d'entrée. Grâce à cette factorisation de matrices, la reconstruction de surface est faite sans connaissance préalable sur les directions de lumière et les propriétés de l'objet reconstruit. L'applicabilité de l'algorithme est prouvée pour des donnés artificielles et des images de bases publiques pour lesquelles la vérité terrain sur les surfaces des objets est disponible.La dernière partie de la thèse est dédiée à l'application de la chaine complète proposée pour le traitement d'images de boîte de Pétri. Ces images sont obtenues en utilisant les sources de lumières complexes qui sont supposées être inconnues pour le processus de reconstruction. L'évaluation de surfaces de colonies microbiennes s'est révélée être une étape importante pour l'analyse visuelle et automatique des colonies. La chaine proposée est efficace pour ce type de données et permet de compléter les informations d'images par de la surface 3D.
183

Indexation et recherche de similarités avec des descripteurs structurés par coupes d'images sur des graphes / Indexing and Searching for Similarities of Images with Structural Descriptors via Graph-cuttings Methods

Ren, Yi 20 November 2014 (has links)
Dans cette thèse, nous nous intéressons à la recherche d’images similaires avec des descripteurs structurés par découpages d’images sur les graphes.Nous proposons une nouvelle approche appelée “bag-of-bags of words” (BBoW) pour la recherche d’images par le contenu (CBIR). Il s’agit d’une extension du modèle classique dit sac-de-mots (bag of words - BoW). Dans notre approche, une image est représentée par un graphe placé sur une grille régulière de pixels d’image. Les poids sur les arêtes dépendent de caractéristiques locales de couleur et texture. Le graphe est découpé en un nombre fixe de régions qui constituent une partition irrégulière de l’image. Enfin, chaque partition est représentée par sa propre signature suivant le même schéma que le BoW. Une image est donc décrite par un ensemble de signatures qui sont ensuite combinées pour la recherche d’images similaires dans une base de données. Contrairement aux méthodes existantes telles que Spatial Pyramid Matching (SPM), le modèle BBoW proposé ne repose pas sur l’hypothèse que des parties similaires d’une scène apparaissent toujours au même endroit dans des images d’une même catégorie. L’extension de cette méthode ` a une approche multi-échelle, appelée Irregular Pyramid Matching (IPM), est ´ également décrite. Les résultats montrent la qualité de notre approche lorsque les partitions obtenues sont stables au sein d’une même catégorie d’images. Une analyse statistique est menée pour définir concrètement la notion de partition stable.Nous donnons nos résultats sur des bases de données pour la reconnaissance d’objets, d’indexation et de recherche d’images par le contenu afin de montrer le caractère général de nos contributions / Image representation is a fundamental question for several computer vision tasks. The contributions discussed in this thesis extend the basic bag-of-words representations for the tasks of object recognition and image retrieval.In the present thesis, we are interested in image description by structural graph descriptors. We propose a model, named bag-of-bags of words (BBoW), to address the problems of object recognition (for object search by similarity), and especially Content-Based Image Retrieval (CBIR) from image databases. The proposed BBoW model, is an approach based on irregular pyramid partitions over the image. An image is first represented as a connected graph of local features on a regular grid of pixels. Irregular partitions (subgraphs) of the image are further built by using graph partitioning methods. Each subgraph in the partition is then represented by its own signature. The BBoW model with the aid of graphs, extends the classical bag-of-words (BoW) model by embedding color homogeneity and limited spatial information through irregular partitions of an image. Compared to existing methods for image retrieval, such as Spatial Pyramid Matching (SPM), the BBoW model does not assume that similar parts of a scene always appear at the same location in images of the same category. The extension of the proposed model to pyramid gives rise to a method we named irregular pyramid matching (IPM).The experiments demonstrate the strength of our approach for image retrieval when the partitions are stable across an image category. The statistical analysisof subgraphs is fulfilled in the thesis. To validate our contributions, we report results on three related computer vision datasets for object recognition, (localized)content-based image retrieval and image indexing. The experimental results in a database of 13,044 general-purposed images demonstrate the efficiency and effectiveness of the proposed BBoW framework.
184

Analyse de distributions spatio-temporelles de transitoires dans des signaux vectoriels. Application à la détection-classification d'activités paroxystiques intercritiques dans des observations EEG

Bourien, Jérôme 20 December 2003 (has links) (PDF)
Les signaux électroencéphalographiques enregistrés chez les patients épileptiques reflètent, en dehors des périodes correspondant aux crises d'épilepsie, des signaux transitoires appelés "activités épileptiformes" (AE). L'analyse des AE peut contribuer à l'étude des épilepsies partielles pharmaco-résistantes. Une méthode de caractérisation de la dynamique spatio-temporelle des AE dans des signaux EEG de profondeur est présentée dans ce document. La méthode est constituée de quatre étapes:<br /><br />1. Détection des AE monovoie. La méthode de détection, qui repose sur une approche heuristique, utilise un banc de filtres en ondelettes pour réhausser la composante pointue des AE (généralement appelée "spike" dans la littérature). La valeur moyenne des statistiques obtenues en sortie de chaque filtre est ensuite analysée avec un algorithme de Page-Hinkley dans le but de détecter des changements abrupts correspondant aux spikes.<br /><br />2. Fusion des AE. Cette procédure recherche des co-occurrences entre AE monovoie à l'aide d'une fenêtre glissante puis forme des AE multivoies.<br /><br />3. Extraction des sous-ensembles de voies fréquement et significativement activées lors des AE multivoies (appelés "ensembles d'activation").<br /><br />4. Evaluation de l'éxistence d'un ordre d'activation temporel reproductible (éventuellement partiel) au sein de chaque ensemble d'activation.<br /><br />Les méthodes proposées dans chacune des étapes ont tout d'abord été évaluées à l'aide de signaux simulés (étape 1) ou à l'aide de models Markoviens (étapes 2-4). Les résultats montrent que la méthode complète est robuste aux effets des fausses-alarmes. Cette méthode a ensuite été appliquée à des signaux enregistrés chez 8 patients (chacun contenant plusieurs centaines d'AE). Les résultats indiquent une grande reproductibilité des distributions spatio-temporelles des AE et ont permis l'identification de réseaux anatomo-fonctionnels spécifiques.
185

Application des méthodes à noyaux sur graphes pour la prédiction des propriétés des molécules.

Gaüzère, Benoit 29 November 2013 (has links) (PDF)
Cette thèse s'intéresse à l'application des méthodes à noyaux sur graphes pour la prédiction de propriétés moléculaires. Dans ce manuscrit, nous présentons un état de l'art des méthodes à noyaux sur graphes définies dans le cadre de la chémoinformatique et plus particulièrement les noyaux sur graphes basés sur les sacs de motifs. Dans ce cadre, nous proposons un nouveau noyau sur graphes basé sur un ensemble explicite de sous-arbres, appelés treelets, permettant d'encoder une grande partie de l'information structurelle acyclique des graphes moléculaires. Nous proposons également de combiner ce noyau avec des méthodes d'apprentissage à noyaux multiples afin d'extraire un ensemble de motifs pertinents. Cette contribution est ensuite étendue en incluant l'information cyclique encodée par deux représentations moléculaires définies par le graphe de cycles pertinents et l'hypergraphe de cycles pertinents. Le graphe des cycles pertinents permet d'encoder le système cyclique d'une molécule. L'hypergraphe de cycles pertinents correspond à une nouvelle représentation moléculaire permettant d'encoder à la fois le système cyclique d'une molécule ainsi que les relations d'adjacence entre les cycles et les parties acycliques. Nous proposons également deux noyaux sur graphes utilisant ces représentations. Enfin, la dernière partie vise à définir des noyaux sur graphes pour la chémoinformatique basés sur la distance d'édition. Un premier noyau est basé sur un opérateur de régularisation utilisant la distance d'édition entre graphes moléculaires. Le second noyau introduit la comparaison de treelets dissimilaires basée sur un algorithme de calcul de la distance d'édition entre treelets.
186

Mesures et modèles pour la capture de mouvement

Reveret, Lionel 16 May 2014 (has links) (PDF)
Il est beaucoup plus fréquent d'entendre parler de capture que de mesure de mouvement. On peut y voir l'intuition que derrière le mot mouvement se conçoit un phénomène plus complexe que la donnée de marqueurs qui en constitue aujourd'hui la norme d'instrumentation rigoureuse. Si le marqueur est quantifiable, le mouvement conserve une qualité supplémentaire à explorer. Je retrace ainsi ici les travaux de recherche que j'ai encadrés ces dernières années sur cette notion de capture de mouvement, à travers les outils scientifiques que sont la mesure et le modèle. Mes activités ont été initialement dédiées à l'animation 3D, puis se sont progressivement tournées vers des enjeux liés à l'anatomie. Les contributions en animation 3D ont d'abord porté sur la recherche d'espaces paramétriques optimaux pour mesurer et générer le mouvement articulé. L'optimalité est à prendre ici au sens de la recherche d'une réduction de dimensions qui préserve au mieux la qualité du mouvement. Elle s'est déclinée autour d'applications pour l'analyse vidéo du mouvement, en particuliers animal, sur la compression de données de mouvement articulé et l'édition de pose de personnage 3D. Ces différents thèmes ce sont structurés autour de modèles d'analyse statistique multidimensionnelle appris des différentes sources données, vidéo ou articulaires, conduisant à un paramétrage de haut niveau du mouvement. J'ai ensuite abordé différents aspects de l'intégration de données réelles dans des modèles d'animation physiques. Le mouvement animal a été étudié à travers une simulation de quadrupèdes dont les paramètres ont été optimisés par rapport à des données "terrain". Le mouvement humain a quant à lui été modélisé à travers le développement d'une formulation en mécanique Lagrangienne des paramètres de haut niveau identifiés précédemment. Une mesure des aspects dynamiques a été menée pour les situations de contacts multiples avec une application d'estimation de forces directement à partir de la cinématique. Une grande partie de mon activité de recherche a aussi porté sur le développement de systèmes expérimentaux pour le petit animal de laboratoire. Les tests sur rongeurs sont les premières étapes de toute mise sur le marché de médicament, de l'évaluation de la toxicité de substance chimique impliquée dans l'agro-alimentaire et de beaucoup de recherche en génétique grace au phénotypage. L'activité motrice est un indice princeps du comportement et donc sa quantification un enjeu important. Je me suis donc intéressé à la mesure 3D du mouvement du rongeur sous diverses conditions, du laboratoire d'anatomie comparée au vol parabolique en apesanteur. Des modèles anatomiques 3D ont été développés et couplés aux méthodes d'estimation de mouvement à partir de la vidéo. Ces recherches expérimentales ont conduit à la mise en place d'une nouvelle plateforme d'analyse construite autour d'un réseau de caméras et de cinéradiograpie biplanaire.
187

Analyse et interprétation de scènes visuelles par approches collaboratives

Strat, Sabin Tiberius 04 December 2013 (has links) (PDF)
Les dernières années, la taille des collections vidéo a connu une forte augmentation. La recherche et la navigation efficaces dans des telles collections demande une indexation avec des termes pertinents, ce qui nous amène au sujet de cette thèse, l'indexation sémantique des vidéos. Dans ce contexte, le modèle Sac de Mots (BoW), utilisant souvent des caractéristiques SIFT ou SURF, donne de bons résultats sur les images statiques. Notre première contribution est d'améliorer les résultats des descripteurs SIFT/SURF BoW sur les vidéos en pré-traitant les vidéos avec un modèle de rétine humaine, ce qui rend les descripteurs SIFT/SURF BoW plus robustes aux dégradations vidéo et qui leurs donne une sensitivité à l'information spatio-temporelle. Notre deuxième contribution est un ensemble de descripteurs BoW basés sur les trajectoires. Ceux-ci apportent une information de mouvement et contribuent vers une description plus riche des vidéos. Notre troisième contribution, motivée par la disponibilité de descripteurs complémentaires, est une fusion tardive qui détermine automatiquement comment combiner un grand ensemble de descripteurs et améliore significativement la précision moyenne des concepts détectés. Toutes ces approches sont validées sur les bases vidéo du challenge TRECVid, dont le but est la détection de concepts sémantiques visuels dans un contenu multimédia très riche et non contrôlé.
188

Capteur de stéréovision hybride pour la navigation des drones

Damien, Eynard 07 November 2011 (has links) (PDF)
La connaissance de l'attitude, de l'altitude, de la segmentation du sol et du mouvement est essentielle pour la navigation d'un drone, en particulier durant les phases critiques de décollage et d'atterrissage. Dans ce travail de thèse, nous présentons un système stéréoscopique hybride composé d'une caméra fisheye et d'une caméra perspective pour estimer les paramètres de navigation d'un drone. À partir de ce capteur, une approche systémique est proposée. Contrairement aux méthodes classiques de stéréovision basées sur l'appariement de primitives, nous proposons des méthodes qui évitent toute mise en correspondance entre les vues hybrides. Une technique de plane-sweeping est suggérée pour déterminer l'altitude et détecter le plan du sol. La rotation et la translation du mouvement sont ensuite découplés : la vue fisheye contribue à évaluer l'attitude et l'orientation tandis que la vue perspective contribue à apporter l'échelle métrique de la translation. Le mouvement peut ainsi être estimé de façon robuste et à l'échelle métrique grâce à la connaissance de l'altitude. Cette méthode repose sur l'algorithme des 2-points complété par un filtre de Kalman. Nous proposons des approches robustes, temps réel et précises, exclusivement basées sur la vision avec une implémentation C++. Bien que cette approche évite l'utilisation de capteurs autres que les caméras, ce système peut également être appuyé par une centrale inertielle.
189

CONTRIBUTIONS AUX TRAITEMENTS D'IMAGES PERSPECTIVES ET OMNIDIRECTIONNELLES PAR DES OUTILS STATISTIQUES

Guelzim, Ibrahim 12 May 2012 (has links) (PDF)
Dans le domaine de la robotique, la vision omnidirectionnelle est privilégiée car elle augmente le champ de vision des capteurs ce qui permet une meilleur navigation et localisation des robots. Les capteurs catadioptriques (combinaison de miroir(s) + caméra(s)) représentent une solution simple et rapide pour atteindre une vue large satisfaisante. Cependant, à cause de la géométrie des miroirs de révolution utilisés, ces capteurs fournissent des images possédant une résolution non uniforme et entrainent des distorsions géométriques. Deux approches sont présentées dans la littérature pour remédier à ces désagréments. La première consiste à traiter les images omnidirectionnelles comme étant des images perspectives, tandis que la seconde utilise des méthodes adaptées à la géométrie des capteurs en travaillant sur des espaces équivalents (Sphère, cylindre). Le principal atout de la première approche est le gain en temps de traitement par contre la qualité des résultats est souvent dépassée par celle des méthodes adaptées. Dans le cadre des travaux de cette thèse, nous avons choisi la voie de la première catégorie. L'objectif est de proposer des méthodes (mise en correspondance, détection de contour et détection de coin) permettant d'améliorer les résultats des traitements des images omnidirectionnelles. Les méthodes proposées sont basées sur des mesures statistiques. Elles présentent l'avantage de parcourir les images omnidirectionnelles par des voisinages (fenêtres) de taille fixe, sans passer par leurs adaptations aux caractéristiques intrinsèques du capteur et à la géométrie du miroir utilisé. Elle présente également l'avantage de ne pas faire appel à la dérivation qui accentue l'effet du bruit aux hautes fréquences de l'image. Les méthodes proposées ont été d'abord validées sur des images perspectives avant d'être appliquées sur les images omnidirectionnelles. Les résultats comparatifs obtenus sont satisfaisants.
190

Contributions to 3D-shape matching, retrieval and classification

Tabia, Hedi 27 September 2011 (has links) (PDF)
Une nouvelle approche pour la mise en correspondance des objets 3D en présence des transformations non-rigides et des modèles partiellement similaires est proposée dans le cadre de cette thèse. L'approche est composée de deux phases. Une première phase pour la description d'objets et une deuxième phase de mesure de similarité. Pour décrire un objet 3D, nous avons choisi une méthode basée sur des descripteurs locaux. La méthode consiste à extraire d'un objet 3D un ensemble de points caractéristiques pour lesquels deux descripteurs locaux sont calculés. Le premier descripteur Geodesic cord descriptor représente la distribution des distances géodésiques entre un point caractéristique et l'ensemble des points de la surface de l'objet 3D. Le deuxième descripteur Curve based descriptor permet de représenter la surface 3D de l'objet par un ensemble de courbes. La forme de ces courbes est analysée à l'aide d'outils issus de la géométrie Riemannienne. Pour mesurer la similarité entre les objets 3D, nous avons utilisé deux techniques différentes dont l'une est basée sur les fonctions de croyance et l'autre est basée sur les sac-de-mots. Afin de valider notre approche nous l'avons adaptée à deux applications différentes à savoir la recherche et la classification d'objets 3D. Les résultats obtenus sur différent benchmarks montrent une efficacité et une pertinence comparés avec les autres méthodes de l'état-de-l'art.

Page generated in 0.1245 seconds