• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Partial Balayage and Related Concepts in Potential Theory

Roos, Joakim January 2016 (has links)
This thesis consists of three papers, all treating various aspects of the operation partial balayage from potential theory. The first paper concerns the equilibrium measure in the setting of two dimensional weighted potential theory, an important measure arising in various mathematical areas, e.g. random matrix theory and the theory of orthogonal polynomials. In this paper we show that the equilibrium measure satisfies a complementary relation with a partial balayage measure if the weight function is of a certain type. The second paper treats the connection between partial balayage measures and measures arising from scaling limits of a generalisation of the so-called divisible sandpile model on lattices. The standard divisible sandpile can, in a natural way, be considered a discrete version of the partial balayage operation with respect to the Lebesgue measure. The generalisation that is developed in this paper is essentially a discrete version of the partial balayage operation with respect to more general measures than the Lebesgue measure. In the third paper we develop a version of partial balayage on Riemannian manifolds, using the theory of currents. Several known properties of partial balayage measures are shown to have corresponding results in the Riemannian manifold setting, one of which being the main result of the first paper. Moreover, we utilize the developed framework to show that for manifolds of dimension two, harmonic and geodesic balls are locally equivalent if and only if the manifold locally has constant curvature. / Denna avhandling består av tre artiklar som alla behandlar olika aspekter av den potentialteoretiska operationen partiell balayage. Den första artikeln betraktar jämviktsmåttet i tvådimensionell viktad potentialteori, ett viktigt mått inom flertalet matematiska inriktningar såsom slumpmatristeori och teorin om ortogonalpolynom. I denna artikel visas att jämviktsmåttet uppfyller en komplementaritetsrelation med ett partiell balayage-mått om viktfunktionen är av en viss typ. Den andra artikeln behandlar relationen mellan partiell balayage-mått och mått som uppstår från skalningsgränser av en generalisering av den så kallade "delbara sandhögen", en diskret modell för partikelaggregation på gitter. Den vanliga delbara sandhögen kan på ett naturligt sätt betraktas som en diskret version av partiell balayage-operatorn med avseende på Lebesguemåttet. Generaliseringen som utarbetas i denna artikel är väsentligen en diskret version av partiell balayage-operatorn med avseende på mer allmänna mått än Lebesguemåttet. I den tredje artikeln formuleras en version av partiell balayage på riemannska mångfalder utifrån teorin om strömmar. Åtskilliga tidigare kända egenskaper om partiella balayage-mått visas ha motsvarande formuleringar i formuleringen på riemannska mångfalder, bland annat huvudresultatet från den första artikeln. Vidare så utnyttjas det utarbetade ramverket för att visa att tvådimensionella riemannska mångfalder har egenskapen att harmoniska och geodetiska bollar lokalt är ekvivalenta om och endast om mångfalden lokalt har konstant krökning. / <p>QC 20160524</p>
2

Problems in Classical Potential Theory with Applications to Mathematical Physics

Lundberg, Erik 01 January 2011 (has links)
In this thesis we are interested in some problems regarding harmonic functions. The topics are divided into three chapters. Chapter 2 concerns singularities developed by solutions of the Cauchy problem for a holomorphic elliptic equation, especially Laplace's equation. The principal motivation is to locate the singularities of the Schwarz potential. The results have direct applications to Laplacian growth (or the Hele-Shaw problem). Chapter 3 concerns the Dirichlet problem when the boundary is an algebraic set and the data is a polynomial or a real-analytic function. We pursue some questions related to the Khavinson-Shapiro conjecture. A main topic of interest is analytic continuability of the solution outside its natural domain. Chapter 4 concerns certain complex-valued harmonic functions and their zeros. The special cases we consider apply directly in astrophysics to the study of multiple-image gravitational lenses.

Page generated in 0.0601 seconds