• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 91
  • 44
  • 22
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 462
  • 462
  • 404
  • 130
  • 120
  • 100
  • 97
  • 97
  • 94
  • 92
  • 87
  • 78
  • 75
  • 72
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Advanced Spectral Methods for Turbulent Flows

Nasr Azadani, Leila 24 April 2014 (has links)
Although spectral methods have been in use for decades, there is still room for innovation, refinement and improvement of the methods in terms of efficiency and accuracy, for generalized homogeneous turbulent flows, and especially for specialized applications like the computation of atmospheric flows and numerical weather prediction. In this thesis, two such innovations are presented. First, inspired by the adaptive mesh refinement (AMR) technique, which was developed for the computation of fluid flows in physical space, an algorithm is presented for accelerating direct numerical simulation (DNS) of isotropic homogeneous turbulence in spectral space. In the adaptive spectral resolution (ASR) technique developed here the spectral resolution in spectral space is dynamically refined based on refinement criteria suited to the special features of isotropic homogeneous turbulence in two, and three dimensions. Applying ASR to computations of two- and three-dimensional turbulence allows significant savings in the computational time with little to no compromise in the accuracy of the solutions. In the second part of this thesis the effect of explicit filtering on large eddy simulation (LES) of atmospheric flows in spectral space is studied. Apply an explicit filter in addition to the implicit filter due to the computational grid and discretization schemes in LES of turbulent flows allows for better control of the numerical error and improvement in the accuracy of the results. Explicit filtering has been extensively applied in LES of turbulent flows in physical space while few studies have been done on explicitly filtered LES of turbulent flows in spectral space because of perceived limitations of the approach, which are shown here to be incorrect. Here, explicit filtering in LES of the turbulent barotropic vorticity equation (BVE) as a first model of the Earth's atmosphere in spectral space is studied. It is shown that explicit filtering increases the accuracy of the results over implicit filtering, particularly where the location of coherent structures is concerned. / Ph. D.
32

Wall Modeled Large Eddy Simulation of Flow over a Wall Mounted Hump

Dilip, Deepu 02 July 2014 (has links)
Large Eddy Simulation (LES) is a relatively more accurate and reliable alternative to solution of Reynolds Averaged Navier Stokes (RANS) equations in simulating complex turbulent flows at a lesser computational cost than a direct numerical simulation (DNS). However, LES of wall-bounded flows still requires a very high grid resolution in the inner wall layer making its widespread use difficult. Different attempts have been made in the past time to overcome this problem by modeling the near wall turbulence instead of resolving it. One such approach is a two-layer wall model that solves for a reduced one-dimensional equation in the inner wall layer, while solving for the filtered Navier-Stokes equations in the outer layer. The use of such a model allows for a coarser grid resolution than a wall resolved LES. This work validates the performance of a two-layer wall model developed for an arbitrary body fitted non-orthogonal grid in the flow over a wall mounted hump at Reynolds number 9.36x105. The wall modeled large eddy simulation (WMLES) relaxes the grid requirement compared to a wall resolved LES (WRLES) by allowing the first off-wall grid point to be placed at a y+ of approximately 20-40. It is found that the WMLES results are general good agreement with WRLES and experiments. Surface pressure coefficient, skin friction, mean velocity profiles, and the reattachment location compare very well with experiment. The WMLES and WRLES exhibit some under prediction of the peak values in the turbulent quantities close to the reattachment location, with better agreement with the experiment in the separated region. In contrast, a simulation that did not employ the wall model on the grid used for WMLES failed to predict flow separation and showed large discrepancies with the experimental data. In addition to the relaxation of the grid requirement in the wall normal direction, it was also observed that the wall model allowed a reduction in the number of computational cells in the span-wise direction by half. However an LES calculation on a grid with reduced number of cells in span-wise direction turned unstable almost immediately, thereby highlighting the effectiveness of the wall model. Besides reducing the number of grid points in the spatial domain, the relaxed grid resolution for the WMLES also permitted the use of a larger time step. This resulted in an order of magnitude reduction in the total CPU time relative to WRLES. / Master of Science
33

Large Eddy Simulation of Multiphase Flows

Deevi, Sri Vallabha January 2015 (has links) (PDF)
Multiphase flows are a common phenomenon. Rains, sediment transport in rivers, snow and dust storms, mud slides and avalanches are examples of multiphase flows occurring in nature. Blood flow is an example of multiphase flow in the human body, which is of vital importance for survival. Multiphase flows occur widely in industrial applications from hydrocarbon extrac-tion to fuel combustion in engines, from spray painting to spray drying, evaporators, pumps and pneumatic conveying. Predicting multiphase flows is of vital importance to understand natural phenomenon and to design and improve industrial processes. Separated flows and dispersed flows are two types of multiphase flows, which occur together in many industrial applications. Physical features of these two classes are different and the transition from one to another involves complex flow physics. Experimental studies of multiphase flows are not easy, as most real world phenomenon cannot be scaled down to laboratory models. Even for those phenomenon that can be demonstrated at lab-oratory scale, rescaling to real world applications requires mathematical models. There are many challenges in experimental measurements of multiphase flows as well. Measurement techniques well suited for single phase flows have constraints when measuring multiphase phenomenon. Un-certainty in experimental measurements poses considerable difficulties in validating numerical models developed for predicting these flows. Owing to the computational effort required, direct simulation of multiphase flows, even for small scale real world applications is out of present scope. Numerical methods have been developed for dealing with each class of flow separately, that in-volves use of models for phenomenon that is computationally demanding. Reynolds Averaged Navier-Stokes (RANS) methods for predicting multiphase flows place strong requirements on turbulence models, as information about fluctuating quantities in the field, that have significant effects on dispersed phase, is not available. Large Eddy Simulation (LES) gives better predictions than RANS as the instantaneous field data is available and large scale unsteadiness that effects the dispersed phase can be captured. Recent LES studies of multiphase flows showed that the sub-grid-scale (SGS) model used for the continuous phase has an effect on the evolution of the dispersed phase. In this work, LES of multiphase flows is performed using Explicit Filtering Large Eddy Sim-ulation method. In this method, spatial derivatives are computed using higher order compact schemes that have spectral-like resolution. SGS modeling is provided by the use of a filter with smoothly falling transfer function. This method is mathematically consistent and converges to a DNS as the grid is refined. It has been successfully applied to combustion and aero-acoustics and this work is the first application of the method to multiphase flows. Study of dispersed multiphase flows was carried out in this work. Modeling of the dispersed phase is kept simple since the in-tention was to evaluate the capability of explicit filtering LES method in predicting multiphase flows. Continuous phase is solved using a compressible formulation with explicit filtering method. Spatial derivatives are computed using fourth and sixth order compact schemes that use derivative splitting method proposed by Hixon & Turkel (2000a) and second order Runge-Kutta (RK2) time stepping. The grid is stretched as needed. Non-reflecting boundary conditions due to Poinsot & Lele (1992) are used to avoid acoustic reflections from boundaries. Buffer zones (Bogey & Bailly (2002)) are employed at outflow and lateral boundaries to damp vortical structures. The code developed for continuous phase is evaluated by studying round jets at Re =36,000 and comparing with experimental measurements of Hussein et al. (1994) and Panchapakesan & Lumley (1993). Simulations showed excellent agreement with experimental results. Rate of decay of axial velocity and the evolution of turbulence intensities on the centerline matched very well with measurements. Radial profiles of mean and fluctuating components of velocities exhibit self-similarity. A set of studies were then performed using this code to assess the effect of numerical scheme, grid refinement & stretching and simulation times on the predictions. Results from these simulations showed good agreements with experiments and established the code for use in multiphase flows under various simulation conditions. To assess the prediction of multiphase flows using this LES method, an evaporating spray ex-periment by Chen et al. (2006) was simulated. The experiment uses a nebuliser for generating a finely atomized spray of acetone, which avoids complex breakdown phenomenon associated with air blast atomizers and provides well defined boundary conditions for model evaluation. The neb-uliser sits upstream in a pipe carrying air and droplets travel along with air for a distance of 10 diameters before exiting into a wind tunnel with co-flowing air. Droplet breakdown, if any, takes place inside the pipe and the spray is finely atomized by the time it reaches pipe exit. One of the experimental cases at Re =31,600, with a mass loading of 1.1% and a jet velocity of 56 m/s is simulated. Particle size has a χsquared distribution with a Sauter mean diameter of 18µm. In the self-similar region, decay of centerline velocity and turbulence intensities matched well with ex-perimental results. Continuous phase exhibits self-similar behavior. A series of simulations were then performed to match the initial region of the spray by altering the inflow conditions in the sim-ulation. Simulation that matched the breakdown location of the experiment revealed the presence of a relaxation zone with a higher initial spreading rate, followed by a lower asymptotic spreading rate. Studies were performed to understand the effect of various phenomenon like evaporation and droplet size on this behavior. A study of breakdown region of particle-laden jets was performed to understand the presence of relaxation zone post breakdown. Flow conditions were similar to evaporating spray experiment except that particles do not evaporate, mass loading is 2% and jet Reynolds number Re =2000. A series of grid refinements were performed and on the largest grid, gird spacing Δy =7.5η, where ηis an estimate of the Kolmogorov length scale based on flow conditions. Decay of axial velocity on the centerline showed variations with grid refinement, tending to the experimentally measured value as the grid is refined. Variation of turbulence intensities along the centerline revealed a jump in axial velocity fluctuations at the breakdown location, while radial and azimuthal velocities showed a smooth increase to their asymptotic value. This jump was resolved on grid refinement and on fine grids axial velocity fluctuations followed the other two quantities closely in their rise to asymptotic state. Comparison of these quantities with a jet without particles revealed that the flow features are same for a jet with and without particles, and at the mass loading studied, particles have negligible effect on jet breakdown. Another study performed at a higher Reynolds number of Re =11,000, under similar flow conditions showed similar behavior. To assess the ability of predicting dispersed phase, simulations of particle-laden flows at low Stokes number were performed and compared against an experiment by Lau & Nathan (2014). The experiment studies variation of velocity and particle concentration along the centerline, and half widths of a jet velocity and concentration. Particles are injected into a pipe along with air, and the two phase flow is fully developed by the time it exits the pipe into a wind tunnel along with a co-flow. Particles are mono-disperse with a density of 1200 kg/m3. Mass loading is 40% so that particles have a significant effect on the continuous phase. Two cases at particle Stokes number of 1.4, one with Re =10,000, bulk velocity of 12 m/s and particle diameter of 20µm and another with Re =22,500, bulk velocity of 36 m/s and particle diameter of 10µm were simulated. Simulations of both the cases showed good match with experimental measurements of centerline decay for the continuous phase. For the dispersed case, simulations with larger particles showed good match with experimental results, while smaller particles showed differences. This was understood to be the effect of lateral migration which is prominent in case of smaller particles, the models for which have not been used in the present simulation study.
34

Large Eddy Simulation Studies of Island Effects in the Caribbean Trade Wind Region

Jähn, Michael 04 April 2016 (has links) (PDF)
In dieser Dissertation wird das kompressible, nicht-hydrostatische und dreidimensionale Modell All Scale Atmospheric Model (ASAM) für Grobstruktur- bzw. Large-Eddy-Simulationen (LES) angewendet, um lokale Inseleffekte in der karibischen Passatwindzone zu untersuchen. Da das Modell bis dato noch keine Anwendung im Bereich von LES feuchter atmosphärischer Grenzschichten und heterogener Oberflächen fand, wurden einige Bestandteile zum Modellcode hinzugefügt oder überarbeitet. Ein Hauptaugenmerk liegt dabei auf das Einbeziehen orographischer Strukturen mittels angeschnittener Zellen (engl. cut cells). Sowohl die räumliche und zeitliche Diskretisierung der Modellgleichungen als auch die nötigen physikalischen Parameterisierungen werden in einer umfassenden Modellbeschreibung zusammengefasst. Die Robustheit und Stabilität der Modellformulierung wird durch eine Reihe von Simulationen idealisierter Testfälle bestätigt. Large-Eddy-Simulationen werden für das Gebiet der Karibikinsel Barbados zur Untersuchung von Inseleffekten bezüglich Grenzschichtmodifikation, Wolkenbildung und vertikaler Durchmischung von Aerosolen durchgeführt. Durch das Vorhandensein einer topographisch strukturierten Inseloberfläche in der Mitte des Modellgebietes muss das Modellsetup offene seitliche Randbedingungen beinhalten. Damit das einströmende Windfeld konsistent mit der Dynamik einer turbulenten, marinen Grenzschicht ist, wird eine neue Methode implementiert und angewendet, welche auf Störungen des potentiellen Temperaturfeldes mittels finiter Amplituden basiert. Beobachtungen aus der SALTRACE-Messkampagne werden benutzt, um die Modellläufe anzutreiben. Die Ergebnisse einiger Sensitivitätstests zeigen Probleme der Modellierung im Bereich der \"Terra incognita\" auf. Dabei handelt es sich um die Modellierung auf räumlichen Skalen, welche zwischen denen von LES und wolkenauflösenden Modellen liegen. Außerdem werden Auswirkungen von entweder turbulent oder laminar anströmenden Windfeldern auf die Simulationsergebnisse untersucht. Besonders die Wolkeneigenschaften im Lee von Barbados werden in diesen Simulationen merklich beeinflusst. Ergebnisse einer weiteren Simulation mit einer sehr starken Passatinversion bringt deren Einfluss auf die Dicke und Höhe der simulierten Wolkenschichten zum Vorschein. Die Veränderung von Saharastaubschichten, welche Barbados über weiträumigen Transport über den Atlantik erreichen, wird analysiert. Die Auswirkungen beinhalten sowohl eine Ausdünnung und ein Absinken dieser Schichten als auch turbulenter Transport in Richtung Erdoberfläche. Die genaue Position der beeinflussten Schichten und die Stärke des turbulenten Mischens werden hauptsächlich von der atmosphärischen Schichtung, der Inversionsstärke und Windscherung gesteuert. Vergleiche zwischen den LES-Modellergebnissen und Daten aus Doppler-Windlidarmessungen zeigen gute Übereinstimmungen in der Formierung der konvektiven Strukturen tagsüber und des Vertikalwindfeldes. / In this thesis, the fully compressible, three-dimensional, nonhydrostatic atmospheric model called All Scale Atmospheric Model (ASAM) is utilized for large eddy simulations (LES) to investigate local island effects at the Caribbean. Since the model has not been applied to LES for moist boundary layers and heterogeneous surfaces so far, several parts are added to the model code or reworked. A special focus lies on the inclusion of orographical structures via the cut cell method. Spatial and temporal discretization as well as necessary physical parameterizations are summarized in a thorough model description. The robustness of the model formulation is confirmed by a set of idealized test case simulations. Large eddy simulations are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, the newly developed cell perturbation method based on finite amplitude perturbations is applied. Observations from the SALTRACE field campaign are used to initialize the model runs. Several numerical sensitivity tests are carried out to demonstrate the problems related to \"gray zone modeling\" beyond LES scales or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties west of Barbados (downwind) are markedly affected in these simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and height. The modification of Saharan dust layers reaching Barbados via long-range transport over the North Atlantic is analyzed. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom become apparent. The position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability, inversion strength and wind shear. Comparisons of LES model output with wind lidar data show similarities in the formation of the daytime convective plume and the vertical wind structure.
35

Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations

Rosch, Jan, Heus, Thijs, Salzmann, Marc, Mülmenstädt, Johannes, Schlemmer, Linda, Quaas, Johannes 28 April 2016 (has links) (PDF)
Current climate models often predict fractional cloud cover on the basis of a diagnostic probability density function (PDF) describing the subgrid-scale variability of the total water specific humidity, qt, favouring schemes with limited complexity. Standard shapes are uniform or triangular PDFs the width of which is assumed to scale with the gridbox mean qt or the grid-box mean saturation specific humidity, qs. In this study, the qt variability is analysed from large-eddy simulations for two stratocumulus, two shallow cumulus, and one deep convective cases. We find that in most cases, triangles are a better approximation to the simulated PDFs than uniform distributions. In two of the 24 slices examined, the actual distributions were so strongly skewed that the simple symmetric shapes could not capture the PDF at all. The distribution width for either shape scales acceptably well with both the mean value of qt and qs, the former being a slightly better choice. The qt variance is underestimated by the fitted PDFs, but overestimated by the existing parameterisations. While the cloud fraction is in general relatively well diagnosed from fitted or parameterised uniform or triangular PDFs, it fails to capture cases with small partial cloudiness, and in 10 – 30% of the cases misdiagnoses clouds in clear skies or vice-versa. The results suggest choosing a parameterisation with a triangular shape, where the distribution width would scale with the grid-box mean qt using a scaling factor of 0.076. This, however, is subject to the caveat that the reference simulations examined here were partly for rather small domains and driven by idealised boundary conditions.
36

Um código LES de alta ordem para simulação de escoamentos turbulentos com desenvolvimento espacial / A high-order LES code for spatially developing turbulent flow simulations

Patrícia Sartori 05 August 2016 (has links)
A metodologia LES (Large Eddy Simulation) é uma alternativa viável para a solução numérica de escoamentos de interesse prático em virtude da limitação computacional imposta pela resolução direta de todas as escalas presentes em escoamentos turbulentos. Entretanto, a compreensão detalhada do fenômeno da turbulência é ainda uma tarefa desafiadora em consequência do seu comportamento não linear e alta sensibilidade às condições iniciais e de contorno. Dessa forma, o sucesso de simulações LES está associado à utilização de um código computacional eficiente, com modelagem submalha que represente corretamente a dinâmica do escoamento, juntamente com a especificação de condições iniciais turbulentas fisicamente consistentes. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento de um código LES de alta ordem aliado a um método de geração de perturbações para o estudo de escoamentos turbulentos em camada limite sobre superfície plana. Foi adotada a formulação vorticidadevelocidade. A metodologia numérica baseia-se no método de diferenças finitas em malhas colocalizadas, onde as derivadas nas direções longitudinal e normal ao escoamento são aproximadas usando diferenças compactas de alta ordem. Esse estudo assume periodicidade na direção transversal do escoamento e então um método espectral é adotado nessa direção. A integração temporal é feita através do método Runge-Kutta de 4a ordem e a solução da equação de Poisson se dá por meio de um método multigrid. Para a modelagem submalha é adotado o modelo WALE (Wall-Adapting Local Eddy-viscosity). O método RFG (Random Flow Generation) foi responsável pela geração das flutuações de velocidade. Os resultados obtidos mostraram-se em boa concordância com os dados DNS (Direct Numerical Simulation) e LES presentes na literatura. / LES methodology is a viable alternative for the numerical solution of practical interest flows due to the computational limitations imposed by the direct resolution of all scales presented in turbulent flow. However, the detailed understanding of the turbulence phenomenon is still a challenging task as a result of its non-linear behavior and high sensitivity to initial and boundary conditions. Thus, the success of LES simulations is associated with the use of an efficient computational code, wherein the subgrid scale modeling accurately represents the flow dynamics, together with the specification of realistic inicial boundary conditions. In this context, this study aims to develop a high-order LES code combined with a method for generating velocity fluctuations to compute turbulent boundary layer flows over a flat plate. The vorticity-velocity formulation was adopted. The numerical scheme is based on the finite difference method in collocated grid, where the derivatives in the streamwise and wall-normal are approximated using high order compact finite difference schemes. We also assume periodicity in spanwise direction therefore it is adopted a spectral method in this direction. The method chosen for the temporal evolution is the 4th order Runge-Kutta method and the solution of Poisson equation solution is accessed via a multigrid algorithm. For subgrid modelling it is adopted the Wall-Adapting Local Eddy-viscosity (WALE) model. The RFG (Random Flow Generation) method was responsible for the generation of unsteady turbulent velocity signal. The results obtained were in good agreement with DNS (Direct Numerical Simulation) and LES from the literature.
37

Um código LES de alta ordem para simulação de escoamentos turbulentos com desenvolvimento espacial / A high-order LES code for spatially developing turbulent flow simulations

Sartori, Patrícia 05 August 2016 (has links)
A metodologia LES (Large Eddy Simulation) é uma alternativa viável para a solução numérica de escoamentos de interesse prático em virtude da limitação computacional imposta pela resolução direta de todas as escalas presentes em escoamentos turbulentos. Entretanto, a compreensão detalhada do fenômeno da turbulência é ainda uma tarefa desafiadora em consequência do seu comportamento não linear e alta sensibilidade às condições iniciais e de contorno. Dessa forma, o sucesso de simulações LES está associado à utilização de um código computacional eficiente, com modelagem submalha que represente corretamente a dinâmica do escoamento, juntamente com a especificação de condições iniciais turbulentas fisicamente consistentes. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento de um código LES de alta ordem aliado a um método de geração de perturbações para o estudo de escoamentos turbulentos em camada limite sobre superfície plana. Foi adotada a formulação vorticidadevelocidade. A metodologia numérica baseia-se no método de diferenças finitas em malhas colocalizadas, onde as derivadas nas direções longitudinal e normal ao escoamento são aproximadas usando diferenças compactas de alta ordem. Esse estudo assume periodicidade na direção transversal do escoamento e então um método espectral é adotado nessa direção. A integração temporal é feita através do método Runge-Kutta de 4a ordem e a solução da equação de Poisson se dá por meio de um método multigrid. Para a modelagem submalha é adotado o modelo WALE (Wall-Adapting Local Eddy-viscosity). O método RFG (Random Flow Generation) foi responsável pela geração das flutuações de velocidade. Os resultados obtidos mostraram-se em boa concordância com os dados DNS (Direct Numerical Simulation) e LES presentes na literatura. / LES methodology is a viable alternative for the numerical solution of practical interest flows due to the computational limitations imposed by the direct resolution of all scales presented in turbulent flow. However, the detailed understanding of the turbulence phenomenon is still a challenging task as a result of its non-linear behavior and high sensitivity to initial and boundary conditions. Thus, the success of LES simulations is associated with the use of an efficient computational code, wherein the subgrid scale modeling accurately represents the flow dynamics, together with the specification of realistic inicial boundary conditions. In this context, this study aims to develop a high-order LES code combined with a method for generating velocity fluctuations to compute turbulent boundary layer flows over a flat plate. The vorticity-velocity formulation was adopted. The numerical scheme is based on the finite difference method in collocated grid, where the derivatives in the streamwise and wall-normal are approximated using high order compact finite difference schemes. We also assume periodicity in spanwise direction therefore it is adopted a spectral method in this direction. The method chosen for the temporal evolution is the 4th order Runge-Kutta method and the solution of Poisson equation solution is accessed via a multigrid algorithm. For subgrid modelling it is adopted the Wall-Adapting Local Eddy-viscosity (WALE) model. The RFG (Random Flow Generation) method was responsible for the generation of unsteady turbulent velocity signal. The results obtained were in good agreement with DNS (Direct Numerical Simulation) and LES from the literature.
38

Modeling turbulence using optimal large eddy simulation

Chang, Henry, 1976- 03 July 2012 (has links)
Most flows in nature and engineering are turbulent, and many are wall-bounded. Further, in turbulent flows, the turbulence generally has a large impact on the behavior of the flow. It is therefore important to be able to predict the effects of turbulence in such flows. The Navier-Stokes equations are known to be an excellent model of the turbulence phenomenon. In simple geometries and low Reynolds numbers, very accurate numerical solutions of the Navier-Stokes equations (direct numerical simulation, or DNS) have been used to study the details of turbulent flows. However, DNS of high Reynolds number turbulent flows in complex geometries is impractical because of the escalation of computational cost with Reynolds number, due to the increasing range of spatial and temporal scales. In Large Eddy Simulation (LES), only the large-scale turbulence is simulated, while the effects of the small scales are modeled (subgrid models). LES therefore reduces computational expense, allowing flows of higher Reynolds number and more complexity to be simulated. However, this is at the cost of the subgrid modeling problem. The goal of the current research is then to develop new subgrid models consistent with the statistical properties of turbulence. The modeling approach pursued here is that of "Optimal LES". Optimal LES is a framework for constructing models with minimum error relative to an ideal LES model. The multi-point statistics used as input to the optimal LES procedure can be gathered from DNS of the same flow. However, for an optimal LES to be truly predictive, we must free ourselves from dependence on existing DNS data. We have done this by obtaining the required statistics from theoretical models which we have developed. We derived a theoretical model for the three-point third-order velocity correlation for homogeneous, isotropic turbulence in the inertial range. This model is shown be a good representation of DNS data, and it is used to construct optimal quadratic subgrid models for LES of forced isotropic turbulence with results which agree well with theory and DNS. The model can also be filtered to determine the filtered two-point third-order correlation, which describes energy transfer among filtered (large) scales in LES. LES of wall-bounded flows with unresolved wall layers commonly exhibit good prediction of mean velocities and significant over-prediction of streamwise component energies in the near-wall region. We developed improved models for the nonlinear term in the filtered Navier-Stokes equation which result in better predicted streamwise component energies. These models involve (1) Reynolds decomposition of the nonlinear term and (2) evaluation of the pressure term, which removes the divergent part of the nonlinear models. These considerations significantly improved the performance of our optimal models, and we expect them to apply to other subgrid models as well. / text
39

La fragmentation du paysage : impact sur l'écoulement atmosphérique et la stabilité au vent des peuplements forestiers / Fragmented landscape : impact on atmospheric flow and tree stability

Poette, Christopher 19 December 2016 (has links)
A l’heure actuelle, seuls des facteurs locaux, stationnels, sont considérés pour le calcul des risques liés au vent alors que le vent qui aborde un peuplement forestier est affecté par les surfaces sur lesquelles il vient de passer ; les lisières en particulier jouent un rôle important sur l’écoulement atmosphérique, en contribuant à générer de la turbulence. Dans un paysage fragmenté, constitué d’une mosaïque de surfaces de différentes hauteurs et rugosités, la multiplicité des lisières est ainsi susceptible d’avoir des effets cumulatifs perceptibles à l’échelle régionale, qui pourraient contribuer de manière significative à la fragilité des massifs face à des tempêtes. Certains niveaux de fragmentation semblent susceptibles de conduire à un accroissement des risques en cas de vent violent. Bien que la région de lisière a été étudiée de manière approfondie dans le passé en raison de leur importance pour la détermination des vitesses de vent, des niveaux de turbulence et des échanges entre l’atmosphère et la canopée, il n’y a aucune étude de l’impact de lisières multiples ou de la fragmentation des forêts sur les caractéristiques de la couche limite à l’échelle du paysage. Quelques rares études laissent penser que la fragmentation du paysage pourrait moduler de manière significative la structure turbulente de la couche limite atmosphérique mais ces études concernent des réseaux de brisevents plutôt qu’un ensemble de parcelles forestières. On cherche par conséquent à caractériser les champs de vent et de turbulence pour ces différentes configurations. Pour ce faire, une expérimentation en soufflerie à été réalisée, visant à caractériser l’écoulement sur des maquettes de paysage présentant cinq degrés de fragmentation (L = ~ 5, ~ 10, ~15, ~20, ~30h, où L est la distance entre deux patchs de forêts régulièrement espacés et h est la hauteur de la canopée). Un cas homogène a également été simulé et sert ici de référence. Pour le modèle de canopée choisi, ces expérimentations montrent que l’énergie cinétique turbulente présente dans la basse atmosphère ne passe pas par un maximum pour une valeur de l’espacement intermédiaire comme il était supposé à l’origine. Le cas homogène est la configuration la plus rugueuse. Pour de grands espacements l’influence d’une parcelle ne se fait guère sentir sur la suivante et lorsqu’ils sont faibles l’écoulement ne "ressent" guère les clairières et présente des caractéristiques semblables au cas homogène. Nous avons également évalué un modèle atmosphérique de type "simulation des grandes échelles" à l’aide des données présentées précédemment. Le modèle est capable de reproduire les grandes caractéristiques de la turbulence telles que les vitesses de vent horizontales et verticales, l’énergie cinétique turbulente, les contraintes de Reynolds et les coefficients d’asymétrie horizontale et verticale en tous points du domaine. Cela nous a permis de confirmer la validité des calculs numériques et de simuler l’écoulement sur une plus large gamme de paysages fragmentés. Les résultats démontrent l’importance de l’indice foliaire pour le calcul de la rugosité effective sur une succession de patchs de forêt. / At present only the characteristics of a forest stand and its immediate environment are taken into account in calculating forest wind risk. However, it is known that the wind is strongly affected by the surfaces over which it has previously flowed. Forest edges in particular play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence, triggering the formation of coherent tree scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may have cumulative effects at the regional scale leading to increased forest damage during storms. Flow changes in the atmospheric boundary-layer across surface roughness changes have received extensive study in the past because of their importance in determining velocities, turbulence levels and exchange between the atmosphere and biosphere or ground. There have also been a number of studies across single forest edges both in the field, wind-tunnels and computer models. However, there have been no studies of flow across multiple forest edges or the impact of forest fragmentation on the characteristics of the boundary-layer. The only studies on multiple surface changes have been wind-tunnel examination of the flow though and across multiple wind-breaks. In this thesis we show results from a series of wind tunnel experiments on a range of levels of forest fragmentation. Five gap spacings (L = ~ 5, ~ 10, ~15, ~20, ~30h, where L is the length of the gap and h is the canopy height) were investigated using 3D laser doppler velocimetry in order to assess the effects of fragmented landscapes on mean and turbulent wind characteristics. The fragmentation was two-dimensional with the transition between forest and gaps only being along the wind direction and the forest and gaps were continuous perpendicular to the wind direction. The wind speeds and turbulence characteristics are compared against measurements from a single forest edge in the wind tunnel, which acts as a reference. No enhancement of turbulence formation at a particular level of fragmentation was observed but there was a consistent pattern of wind speed and turbulence back from the first edge of each simulation with the horizontal velocity at tree top increasing and the turbulent kinetic energy decreasing as gap size increased. We also compare mean wind speeds (U and W) and turbulence characteristics (variance in u, v, and w; skewness in U, V, and W; Reynold’s stress, and TKE) at all points in the experimental measurement domain of the wind tunnel with Large Eddy Simulation (LES) results, which allows us to confirm the validity of the LES calculations and to conduct a wider range of experiments than was possible in the wind-tunnel. The results demonstrate the importance of the frontal area index or roughness density of elements (in this case trees) in determining the nature of the flow and the effective roughness of the overall surface. They also show that as the gaps between forest blocks increases the flow transitions (at a gap size between 10 to 15 tree heights) from flow comparable to that over a continuous forest to flow across a set of isolated forest blocks.
40

Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations: Analysis of diagnostic climate model cloud parameterisations usinglarge-eddy simulations

Rosch, Jan, Heus, Thijs, Salzmann, Marc, Mülmenstädt, Johannes, Schlemmer, Linda, Quaas, Johannes January 2015 (has links)
Current climate models often predict fractional cloud cover on the basis of a diagnostic probability density function (PDF) describing the subgrid-scale variability of the total water specific humidity, qt, favouring schemes with limited complexity. Standard shapes are uniform or triangular PDFs the width of which is assumed to scale with the gridbox mean qt or the grid-box mean saturation specific humidity, qs. In this study, the qt variability is analysed from large-eddy simulations for two stratocumulus, two shallow cumulus, and one deep convective cases. We find that in most cases, triangles are a better approximation to the simulated PDFs than uniform distributions. In two of the 24 slices examined, the actual distributions were so strongly skewed that the simple symmetric shapes could not capture the PDF at all. The distribution width for either shape scales acceptably well with both the mean value of qt and qs, the former being a slightly better choice. The qt variance is underestimated by the fitted PDFs, but overestimated by the existing parameterisations. While the cloud fraction is in general relatively well diagnosed from fitted or parameterised uniform or triangular PDFs, it fails to capture cases with small partial cloudiness, and in 10 – 30% of the cases misdiagnoses clouds in clear skies or vice-versa. The results suggest choosing a parameterisation with a triangular shape, where the distribution width would scale with the grid-box mean qt using a scaling factor of 0.076. This, however, is subject to the caveat that the reference simulations examined here were partly for rather small domains and driven by idealised boundary conditions.

Page generated in 0.4179 seconds