Spelling suggestions: "subject:"large neighborhood 3research"" "subject:"large neighborhood 1research""
1 |
Sequential and parallel large neighborhood search algorithms for the periodic location routing problemHemmelmayr, Vera 05 1900 (has links) (PDF)
We propose a large neighborhood search (LNS) algorithm to solve the periodic location routing problem (PLRP). The PLRP combines location and routing decisions over a planning horizon in which customers require visits according to a given frequency and the specific visit days can be chosen. We use parallelization strategies that can exploit the availability of multiple processors. The computational results show that the algorithms obtain better results than previous solution methods on a set of standard benchmark instances from the literature.
|
2 |
A Comparative Study on a Dynamic Pickup and Delivery Problem : Improving routing and order assignment in same-day courier operations / En jämförande studie av ett dynamiskt upplockning- och avlämningsproblem : Förbättrande av ruttplanering och beställningstilldelning i leveransoperationer med kort planeringshorisontAndersson, Tomas January 2021 (has links)
Pickup and Delivery Problems (PDPs) constitute a class of Vehicle Routing Problems (VRPs) consisting of finding the optimal routes for a fleet of vehicles to deliver requests from a set of origin locations to a corresponding set of destinations. PDPs are NP-hard and have a wide variety of variants and potential constraints. This thesis evaluates methods for solving a dynamic single- vehicle PDP restricted by multiple time-related constraints. The problem is dynamic in the sense that new requests arrive as time is simulated and inserted into the vehicle’s pickup and delivery plan as it is being executed. The time- related constraints include limited time windows during which the requests may be picked up or delivered, as well as maximum ride times that items may spend in the vehicle before being delivered. To solve the problem, we adapt insertion heuristics based on Large Neighborhood Search (LNS) and Heuristic Destroy and Repair (HDR) to the problem and evaluate them in a comparative study. Solution methods for the PDP are also applied on the problem of dynamically assigning incoming orders to vehicles in a delivery service with a short planning horizon. A PDP-based order assignment strategy is compared with assignment strategies based on proximity and workload. Due to the short planning horizon of the target application, the study is focused on finding well-performing methods for quickly solving small PDPs containing 10-15 requests. Our results indicate that LNS outperforms HDR for small problem instances. However, the quick convergence of HDR allows it to outperform LNS for larger problem instances. We also show that applying a PDP- based assignment strategy in the order assignment problem allows the service to accommodate more requests than the alternative assignment strategies while simultaneously providing a significant reduction in operational costs. Future work may improve the order assignment strategy by incorporating more anticipatory functionality and streamlining the PDP methods with more efficient tests for the feasibility of solutions. / Pickup and Delivery Problems (PDP:er) utgör en grupp av Vehicle Routing Problems (VRP:er) som består av att hitta de optimala rutterna för en fordonsflotta för att leverera beställningar från en uppsättning av upplockningsplatser till motsvarande uppsättning av avlämningsplatser. PDP:er är NP-svåra och har en stor mängd olika varianter och potentiella begränsningar. Denna avhandling utvärderar metoder för att lösa ett dynamiskt enkel-fordon PDP med flera tidsrelaterade begränsningar. Problemet är dynamiskt i den mening att nya beställnigar anländer i samband med att tiden simuleras och sätts in i fordonets leveransplan samtidigt som den utförs. De tidsrelaterade begränsningarna innefattar begränsade tidsfönstren under vilka beställningar kan plockas upp eller lämnas av, samt maximala tider som hämtade föremål får tillbringa i fordonet innan de lämnas av. För att lösa problemet anpassar vi insättningsheuristiker baserade på Large Neighborhood Search (LNS) och Heuristic Destroy and Repair (HDR) till problemet och utvärderar dem i en jämförande studie. Lösningsmetoder för PDP tillämpas också på problemet att dynamiskt tilldela inkommande beställningar till fordon i en leveransservice med en kort planeringshorisont. En PDP-baserad tilldelningsstrategi jämförs med strategier baserade på närhet och arbetsbelastning. På grund av målapplikationens korta planeringshorisont så fokuserar studien på att hitta väl presterande metoder för att snabbt lösa små PDP:er som innehåller 10-15 förfrågningar. Våra resultat indikerar att LNS överträffar HDR för små probleminstanser. Däremot leder den snabba konvergensen av HDR till att den överträffar LNS för större probleminstanser. Vi visar också att tillämpningen av en PDP-baserad tilldelningsstrategi i tilldelningsproblemet gör att tjänsten kan tillgodose fler beställningar än de alternativa tilldelningsstrategierna, samtidigt som det ger en betydlig minskning av driftskostnaderna. Framtida arbete kan förbättra tilldelningsstrategin genom att integrera mer förutseende funktionalitet och effektivisera PDP-metoderna med ett mer effektivt test av genomförbarhet för lösningar.
|
3 |
Contrôle de la propagation et de la recherche dans un solveur de contraintes / Controlling propagation and search within a constraint solverPrud'homme, Charles 28 February 2014 (has links)
La programmation par contraintes est souvent décrite, utopiquement, comme un paradigme déclaratif dans lequel l’utilisateur décrit son problème et le solveur le résout. Bien entendu, la réalité des solveurs de contraintes est plus complexe, et les besoins de personnalisation des techniques de modélisation et de résolution évoluent avec le degré d’expertise des utilisateurs. Cette thèse porte sur l’enrichissement de l’arsenal des techniques disponibles dans les solveurs de contraintes. D’une part, nous étudions la contribution d’un système d’explications à l’exploration de l’espace de recherche, dans le cadre spécifique d’une recherche locale. Deux heuristiques de voisinages génériques exploitant singulièrement les explications sont décrites. La première se base sur la difficulté de réparer une solution partiellement détruite, la seconde repose sur la nature non-optimale de la solution courante. Ces heuristiques mettent à jour la structure interne des problèmes traités pour construire des voisins de bonne qualité pour une recherche à voisinage large. Elles sont complémentaires d’autres heuristiques de voisinages génériques, avec lesquels elles peuvent être combinées efficacement. De plus, nous proposons de rendre le système d’explications paresseux afin d’en minimiser l’empreinte. D’autre part, nous effectuons un état des lieux des savoir-faire relatifs aux moteurs de propagation pour les solveurs de contraintes. Ces données sont exploitées opérationnellement à travers un langage dédié qui permet de personnaliser la propagation au sein d’un solveur, en fournissant des structures d’implémentation et en définissant des points de contrôle dans le solveur. Ce langage offre des concepts de haut niveau permettant à l’utilisateur d’ignorer les détails de mise en œuvre du solveur, tout en conservant un bon niveau de flexibilité et certaines garanties. Il permet l’expression de schémas de propagation spécifiques à la structure interne de chaque problème. La mise en œuvre et les expérimentations ont été effectués dans le solveur de contraintes Choco. Cette thèse a donné lieu à une nouvelle version de l’outil globalement plus efficace et nativement expliqué. / Constraint programming is often described, idealistically, as a declarative paradigm in which the user describes the problem and the solver solves it. Obviously, the reality of constraint solvers is more complex, and the needs in customization of modeling and solving techniques change with the level of expertise of users. This thesis focuses on enriching the arsenal of available techniques in constraint solvers. On the one hand, we study the contribution of an explanation system to the exploration of the search space in the specific context of a local search. Two generic neighborhood heuristics which exploit explanations singularly are described. The first one is based on the difficulty of repairing a partially destroyed solution, the second one is based on the non-optimal nature of the current solution. These heuristics discover the internal structure of the problems to build good neighbors for large neighborhood search. They are complementary to other generic neighborhood heuristics, with which they can be combined effectively. In addition, we propose to make the explanation system lazy in order to minimize its footprint. On the other hand, we undertake an inventory of know-how relative to propagation engines of constraint solvers. These data are used operationally through a domain specific language that allows users to customize the propagation schema, providing implementation structures and defining check points within the solver. This language offershigh-level concepts that allow the user to ignore the implementation details, while maintaining a good level of flexibility and some guarantees. It allows the expression of propagation schemas specific to the internal structure of each problem solved. Implementation and experiments were carried out in the Choco constraint solver, developed in this thesis. This has resulted in a new version of the overall effectiveness and natively explained tool.
|
4 |
An adaptive large neighborhood search heuristic for Two-Echelon Vehicle Routing Problems arising in city logisticsHemmelmayr, Vera, Cordeau, Jean Francois, Crainic, Teodor Gabriel 27 April 2012 (has links) (PDF)
In this paper,we propose an adaptive large neighborhood search heuristic for the Two-Echelon Vehicle Routing Problem (2E-VRP) and the Location Routing Problem (LRP).The 2E-VRP arises in two-level transportation systems such as those encountered in the context of city logistics. In such systems, freight arrives at a major terminal and is shipped through intermediate satellite facilities to the final
customers. The LRP can be seen as a special case of the 2E-VRP in which vehicle routing is performed only at the second level. We have developed new neighborhood search operators by exploiting the structure of the two problem classes considered and have also adapted existing operators from the literature. The operators are used in a hierarchical scheme reflecting the multi-level nature of the
problem. Computational experiments conducted on several sets of instances from the literature show that our algorithm out performs existing solution methods for the 2E-VRP and achieves excellent results on the LRP.
|
5 |
Designing a large neighborhood search method to solve a multi-processor avionics scheduling problemSvensson, Jesper January 2021 (has links)
This thesis introduces a Large Neighborhood Search (LNS) method to solve a multi-processor avionics scheduling problem. In a typical scheduling problem, tasks are scheduled with exact starting times. In this thesis however, tasks will instead be assigned to disjoint time segments, called buckets. For an assignment to be feasible, precedence relations and capacity constraints related to network and computing resources need to be fulfilled. The introduced LNS method relies on solving Mixed-Integer Programming (MIP)-models. To make progress in the search for a feasible assignment, we construct a MIP-model that allows violation of the problem constraints at a cost of increased objective value. The LNS method uses two operators, a destroy operator that chooses a set of tasks that are allowed to change buckets, and a repair operator that through solving the MIP-model creates a new schedule. This thesis develops 11 types of destroy operators and 30 (concrete) variants of them. The MIP-based LNS is evaluated on a set of 60 instances with up to 84 000 tasks and 21 processors. The instances belongs to six categories of varying difficulty. The MIP-based LNS solves 50 instances within our time limit, and the largest instance solved has 77 757 tasks. This is significantly better than solving the complete MIP-model in a single step. With this approach only 36 instances can be solved within our time limit and the largest instance solved has 48554 tasks.
|
6 |
Large Neighborhood Search for rich VRP with multiple pickup and delivery locationsGoel, Asvin, Gruhn, Volker 17 January 2019 (has links)
In this paper we consider a rich vehicle routing problem where transportation requests are characterised by multiple pickup and delivery locations. The problem is a combined load acceptance and generalised vehicle routing problem incorporating a diversity of practical complexities. Among those are time window restrictions, a heterogeneous vehicle fleet with different travel times, travel costs and capacity,
multi-dimensional capacity constraints, order/vehicle compatibility constraints, and different start and end locations for vehicles. We propose iterative improvement approaches based on Large Neighborhood
Search and a relatedness measure for transportation requests with multiple pickup and delivery locations. Our algorithms are characterised by very fast response times and thus, can be used within dynamic routing systems where input data can change at any time.
|
7 |
Modified Ant Colony Algorithm for Dynamic Optimization: A Case Study with Wildlife SurveillanceBullington, William 06 May 2017 (has links)
A novel Ant Colony Optimization (ACO) framework for a dynamic environment has been proposed in this study. This algorithm was developed to solve Dynamic Traveling Salesman Problems more efficiently than the current algorithms. Adaptive Large Neighborhood Search based immigrant schemes have been developed and compared with existing ACO-based immigrant schemes in literature to maintain diversity via transferring knowledge to the pheromone trails from previous environments. Numerical results indicate that the proposed algorithm can handle dynamicity in the environment more efficiently compared to other immigrant-based ACOs available in the literature. A real-life case study for wildlife surveillance by unmanned aerial vehicles has also been developed and solved using the proposed algorithm.
|
8 |
Short-term Underground Mine Scheduling : Constraint Programming in an Industrial ApplicationÅstrand, Max January 2018 (has links)
The operational performance of an underground mine depends critically on how the production is scheduled. Increasingly advanced methods are used to create optimized long-term plans, and simultaneously the actual excavation is getting more and more automated. Therefore, the mapping of long-term goals into tasks by manual short-term scheduling is becoming a limiting segment in the optimization chain. In this thesis we study automating the short-term mine scheduling process, and thus contribute to an important missing piece in the pursuit of autonomous mining. First, we clarify the fleet scheduling problem and the surrounding context. Based on this knowledge, we propose a flow shop that models the mine scheduling problem. A flow shop is a general abstract process formulation that captures the key properties of a scheduling problem without going into specific details. We argue that several popular mining methods can be modeled as a rich variant of a k-stage hybrid flow shop, where the flow shop includes a mix of interruptible and uninterruptible tasks, after-lags, machine unavailabilities, and sharing of machines between stages. Then, we propose a Constraint Programming approach to schedule the underground production fleet. We formalize the problem and present a model that can be used to solve it. The model is implemented and evaluated on instances representative of medium-sized underground mines. After that, we introduce travel times of the mobile machines to the scheduling problem. This acknowledges that underground road networks can span several hundreds of kilometers. With this addition, the initially proposed Constraint Programming model struggles with scaling to larger instances. Therefore, we introduce a second model. The second model does not solve the interruptible scheduling problem directly; instead, it solves a related uninterruptible problem and transforms the solution back to the original time domain. This model is significantly faster, and can solve instances representative of large-sized mines even when including travel times. Lastly, we focus on finding high-quality schedules by introducing Large Neighborhood Search. To do this, we present a domain-specific neighborhood definition based on relaxing variables corresponding to certain work areas. Variants of this neighborhood are evaluated in Large Neighborhood Search and compared to using only restarts. All methods and models in this thesis are evaluated on instances generated from an operational underground mine. / Underjordsgruvans operativa prestanda är till stor del beroende av schemaläggningen av de mobila maskinerna. Allt mer avancerade metoder används för att skapa optimerade långtidsplaner samtidigt som produktionsaktiviteterna blir allt mer automatiserade. Att överföra långtidsmål till aktiviteter genom manuell schemaläggning blir därför ett begränsande segment i optimeringskedjan. I denna avhandling studerar vi automatisering av schemaläggning för underjordsgruvor och bidrar således med en viktig komponent i utvecklandet av autonom gruvdrift. Vi börjar med att klargöra schemaläggningsproblemet och dess omgivande kontext. Baserat på detta klargörande föreslår vi en abstraktion där problemet kan ses som en flow shop. En flow shop är en processmodell som fångar de viktigaste delarna av ett schemaläggningsproblem utan att hänsyn tas till allt för många detaljer. Vi visar att flera populära gruvbrytningsmetoder kan modelleras som en utökad variant av en k-stage hybrid flow shop. Denna utökade flow shop innehåller en mix av avbrytbara och icke avbrytbara aktiviteter, eftergångstid, indisponibla maskiner samt gemensamma maskinpooler för vissa steg. Sedan föreslår vi ett koncept för att lösa schemaläggningsproblemet med hjälp av villkorsprogrammering. Vi formaliserar problemet och presenterar en modell som kan användas för att lösa det. Modellen implementeras och utvärderas på probleminstanser representativa för mellanstora underjordsgruvor. Efter det introducerar vi restider för de mobila maskinerna i schemaläggningsproblemet. Detta grundar sig i att vägnätet i underjordsgruvor kan sträcka sig upp till flera hundra kilometer. Med det tillägget får den initiala villkorsprogrammeringsmodellen svårt att lösa större instanser. För att möta det problemet så introducerar vi en ny modell. Den nya modellen löser inte det avbrytbara problemet direkt utan börjar med att lösa ett relaterat, icke avbrytbart, problem för att sedan transformera lösningen tillbaka till den ursprungliga tidsdomänen. Denna modell är betydligt snabbare och kan lösa probleminstanser representativa för stora underjordsgruvor även när restider inkluderas. Avslutningsvis fokuserar vi på att hitta scheman av hög kvalitet genom att optimera med Large Neighborhood Search. För att åstadkomma detta presenterar vi ett domänspecifikt grannskap baserat på att relaxera variabler som rör aktiviteter inom vissa produktionsområden. Flera varianter av detta grannskap utvärderas och jämförs med att enbart använda omstarter. Alla metoder och modeller i den här avhandlingen är utvärderade på genererade instanser från en operativ underjordsgruva. / <p>QC 20181026</p>
|
9 |
O problema de minimização de trocas de ferramentas / The minimization of tool switches problemMoreira, Andreza Cristina Beezão 02 September 2016 (has links)
Especialmente nas últimas quatro décadas, muitos estudos se voltaram às variáveis determinantes para a implementação efetiva de sistemas flexíveis de manufatura, tais como seu design, sequenciamento e controle. Neste ínterim, o manejo apropriado do conjunto de ferramentas necessárias para a fabricação de um respectivo lote de produtos foi destacado como fator crucial no desempenho do sistema de produção como um todo. Neste trabalho, abordamos a otimização do número de inserções e remoções de ferramentas no magazine de uma ou mais máquinas numericamente controladas, admitindo-se que uma parcela significativa do tempo de produção é dispensada com estas trocas de ferramentas. De forma mais precisa, a minimização do número de trocas de ferramentas consiste em determinar a ordem de processamento de um conjunto de tarefas, bem como o carregamento ótimo do(s) compartimento(s) de ferramentas da(s) máquina(s), a fim de que o número de trocas seja minimizado. Como demostrado na literatura, mesmo o caso restrito à existência de apenas uma máquina de manufatura (MTSP, do inglês Minimization of Tool Switches Problem) é um problema NP-difícil, o que pode justificar o fato observado de que a maioria dos métodos de solução existentes o abordam de maneira heurística. Consequentemente, concluímos que a extensão ao contexto de múltiplas máquinas é também um problema NP-difícil, intrinsecamente complicado de se resolver. Nosso objetivo consiste em estudar formas eficientes de otimizar o número de trocas de ferramentas em ambientes equipados com máquinas flexíveis de manufatura. Para tanto, abordamos o problema básico, MTSP, e duas de suas variantes, em níveis crescentes de abrangência, que consideram o sequenciamento de tarefas em um conjunto de: (i) máquinas paralelas e idênticas (IPMTC, do inglês Identical Parallel Machines problem with Tooling Constraints); e (ii) máquinas paralelas e idênticas inseridas em um ambiente do tipo job shop (JSSPTC, do inglês Job Shop Scheduling Problem with Tooling Constraints). Classificamos as principais contribuições desta tese com respeito a três aspectos. Primeiramente, empurramos as fronteiras da literatura do MTSP propondo formulações matemáticas para os problemas IPMTC e JSSPTC. Desenvolvemos, também, algoritmos baseados em diferentes técnicas de resolução, como redução de domínio, Path relinking, Adaptive large neighborhood search e a elaboração de regras de despacho. Por último, com o intuito de bem avaliar a eficiência e o alcance de nossos métodos, propomos três novos conjuntos de instâncias teste. Acreditamos, assim, que este trabalho contribui positivamente com pesquisas futuras em um cenário abrangente dentro da minimização das trocas de ferramentas em um sistema flexível de manufatura. / Several studies, especially in the last four decades, have focused on decisive elements for the effective implementation of flexible manufacturing systems, such as their design, scheduling and control. In the meantime, the appropriate management of the set of tools needed to manufacture a certain lot of products has been highlighted as a crucial factor in the performance of the production system as a whole. This work deals with the optimization of the number of insertions and removals from the magazine of one or more numerical controlled machines, assuming that a significant part of the production time is wasted with such tool switches. More precisely, the minimization of tool switches problem (MTSP) consists on determining the processing order of a set of jobs, as well as the optimal loading of the magazine(s) of the machine(s), so that the total number of switches is minimized. As formally demonstrated in the literature, the MTSP is a NP-hard problem even when considering the existence of only one manufacturing machine, which could justify the fact that most of the solution methods tackles it heuristically. We thus conclude that its extension to the case of multiples machines is also NP-hard and, therefore, a problem intrinsically difficult to solve. Our goal consists in studying efficient ways to optimize the number of tool switches in environments equipped with flexible manufacturing machines. For that, we address the basic problem, MTSP, and two MTSP variants, in increasing levels of reach, that consider the job sequencing in a set of: (i) identical parallel machines (Identical Parallel Machines problem with Tooling Constraints, IPMTC); and (ii) identical parallel machines inserted in a job shop environment (Job Shop Scheduling Problem with Tooling Constraints, JSSPTC). The main contributions of this thesis are classified according three aspects. First, we pushed the frontier of the MTSP literature by proposing mathematical formulations for IPMTC and JSSPTC. We also developed algorithms based on different solution techniques, such as domain reduction, Path Relinking, Adaptive Large Neighborhood Search and dispatching rules. Finally, to fully evaluate the effectiveness and limits of our methods, three new sets of benchmark instances were generated. We believe that this work contributes positively to the future of research in a broad scenario inside the minimization of tool switches in flexible manufacturing systems.
|
10 |
O problema de minimização de trocas de ferramentas / The minimization of tool switches problemAndreza Cristina Beezão Moreira 02 September 2016 (has links)
Especialmente nas últimas quatro décadas, muitos estudos se voltaram às variáveis determinantes para a implementação efetiva de sistemas flexíveis de manufatura, tais como seu design, sequenciamento e controle. Neste ínterim, o manejo apropriado do conjunto de ferramentas necessárias para a fabricação de um respectivo lote de produtos foi destacado como fator crucial no desempenho do sistema de produção como um todo. Neste trabalho, abordamos a otimização do número de inserções e remoções de ferramentas no magazine de uma ou mais máquinas numericamente controladas, admitindo-se que uma parcela significativa do tempo de produção é dispensada com estas trocas de ferramentas. De forma mais precisa, a minimização do número de trocas de ferramentas consiste em determinar a ordem de processamento de um conjunto de tarefas, bem como o carregamento ótimo do(s) compartimento(s) de ferramentas da(s) máquina(s), a fim de que o número de trocas seja minimizado. Como demostrado na literatura, mesmo o caso restrito à existência de apenas uma máquina de manufatura (MTSP, do inglês Minimization of Tool Switches Problem) é um problema NP-difícil, o que pode justificar o fato observado de que a maioria dos métodos de solução existentes o abordam de maneira heurística. Consequentemente, concluímos que a extensão ao contexto de múltiplas máquinas é também um problema NP-difícil, intrinsecamente complicado de se resolver. Nosso objetivo consiste em estudar formas eficientes de otimizar o número de trocas de ferramentas em ambientes equipados com máquinas flexíveis de manufatura. Para tanto, abordamos o problema básico, MTSP, e duas de suas variantes, em níveis crescentes de abrangência, que consideram o sequenciamento de tarefas em um conjunto de: (i) máquinas paralelas e idênticas (IPMTC, do inglês Identical Parallel Machines problem with Tooling Constraints); e (ii) máquinas paralelas e idênticas inseridas em um ambiente do tipo job shop (JSSPTC, do inglês Job Shop Scheduling Problem with Tooling Constraints). Classificamos as principais contribuições desta tese com respeito a três aspectos. Primeiramente, empurramos as fronteiras da literatura do MTSP propondo formulações matemáticas para os problemas IPMTC e JSSPTC. Desenvolvemos, também, algoritmos baseados em diferentes técnicas de resolução, como redução de domínio, Path relinking, Adaptive large neighborhood search e a elaboração de regras de despacho. Por último, com o intuito de bem avaliar a eficiência e o alcance de nossos métodos, propomos três novos conjuntos de instâncias teste. Acreditamos, assim, que este trabalho contribui positivamente com pesquisas futuras em um cenário abrangente dentro da minimização das trocas de ferramentas em um sistema flexível de manufatura. / Several studies, especially in the last four decades, have focused on decisive elements for the effective implementation of flexible manufacturing systems, such as their design, scheduling and control. In the meantime, the appropriate management of the set of tools needed to manufacture a certain lot of products has been highlighted as a crucial factor in the performance of the production system as a whole. This work deals with the optimization of the number of insertions and removals from the magazine of one or more numerical controlled machines, assuming that a significant part of the production time is wasted with such tool switches. More precisely, the minimization of tool switches problem (MTSP) consists on determining the processing order of a set of jobs, as well as the optimal loading of the magazine(s) of the machine(s), so that the total number of switches is minimized. As formally demonstrated in the literature, the MTSP is a NP-hard problem even when considering the existence of only one manufacturing machine, which could justify the fact that most of the solution methods tackles it heuristically. We thus conclude that its extension to the case of multiples machines is also NP-hard and, therefore, a problem intrinsically difficult to solve. Our goal consists in studying efficient ways to optimize the number of tool switches in environments equipped with flexible manufacturing machines. For that, we address the basic problem, MTSP, and two MTSP variants, in increasing levels of reach, that consider the job sequencing in a set of: (i) identical parallel machines (Identical Parallel Machines problem with Tooling Constraints, IPMTC); and (ii) identical parallel machines inserted in a job shop environment (Job Shop Scheduling Problem with Tooling Constraints, JSSPTC). The main contributions of this thesis are classified according three aspects. First, we pushed the frontier of the MTSP literature by proposing mathematical formulations for IPMTC and JSSPTC. We also developed algorithms based on different solution techniques, such as domain reduction, Path Relinking, Adaptive Large Neighborhood Search and dispatching rules. Finally, to fully evaluate the effectiveness and limits of our methods, three new sets of benchmark instances were generated. We believe that this work contributes positively to the future of research in a broad scenario inside the minimization of tool switches in flexible manufacturing systems.
|
Page generated in 0.0572 seconds