• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 13
  • 11
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 36
  • 28
  • 24
  • 24
  • 22
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

INVERSE MODELING BASED ON MRI MEASUREMENTS TO COMPARE CAHN-HILLIARD MODELS USING MULTIPHASE POROUS ELECTRODE THEORY / INVERSE MODELING OF LI TRANSPORT IN MULTIPHASE ELECTRODES

Mitchell, Alec January 2020 (has links)
In this study, a computational approach to the solution of an inverse modeling problem is developed to reconstruct unknown material properties of a Li-ion battery. In-situ MRI measurements performed on a layered graphite electrode during charging are used in comparison with Stefan-Maxwell concentrated electrolyte theory, Butler-Volmer reaction kinetics, and multiphase porous electrode theory to explore the overall accuracy of models for Li transport processes in the active material. In particular, the main research goal here is to determine if the original Cahn-Hilliard formulation for phase-separation can be improved upon through extension to a periodic bilayer model (two-layer Cahn-Hilliard). The original model contains a pair of two stable phases at low and high concentrations that produces the ``shrinking core'' behavior for lithiated graphite. The comparative advantage of the periodic bilayer model stems from the capturing of a third stable phase of intermediate concentration as the average between one concentrated layer and one dilute layer. Calibration is done simultaneously on concentration and cell voltage profiles through multi-objective optimization where the accuracy of a model is assessed based on the quantification of agreement with experimental data. The periodic bilayer model is found to improve upon the least-squares error for fitting of concentration profiles by roughly 20%, while the voltage fittings are too similar to be conclusive. / Thesis / Master of Science (MSc)
72

Modeling and Experimental Validation of Mission-Specific Prognosis of Li-Ion Batteries with Hybrid Physics-Informed Neural Networks

Fricke, Kajetan 01 January 2023 (has links) (PDF)
While the second part of the 20th century was dominated by combustion engine powered vehicles, climate change and limited oil resources has been forcing car manufacturers and other companies in the mobility sector to switch to renewable energy sources. Electric engines supplied by Li-ion battery cells are on the forefront of this revolution in the mobility sector. A challenging but very important task hereby is the precise forecasting of the degradation of battery state-of-health and state-of-charge. Hence, there is a high demand in models that can predict the SOH and SOC and consider the specifics of a certain kind of battery cell and the usage profile of the battery. While traditional physics-based and data-driven approaches are used to monitor the SOH and SOC, they both have limitations related to computational costs or that require engineers to continually update their prediction models as new battery cells are developed and put into use in battery-powered vehicle fleets. In this dissertation, we enhance a hybrid physics-informed machine learning version of a battery SOC model to predict voltage drop during discharge. The enhanced model captures the effect of wide variation of load levels, in the form of input current, which causes large thermal stress cycles. The cell temperature build-up during a discharge cycle is used to identify temperature-sensitive model parameters. Additionally, we enhance an aging model built upon cumulative energy drawn by introducing the effect of the load level. We then map cumulative energy and load level to battery capacity with a Gaussian process model. To validate our approach, we use a battery aging dataset collected on a self-developed testbed, where we used a wide current level range to age battery packs in accelerated fashion. Prediction results show that our model can be successfully calibrated and generalizes across all applied load levels.
73

Design Principles of Li-rich Mn-based Cathode Materials for Next Generation Li-ion Batteries / 次世代リチウムイオン電池用リチウム過剰系マンガンベース正極材料の設計原則

Aierxiding, Abulikemu 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第25385号 / 人博第1127号 / 新制||人||262(附属図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 田部 勢津久, 教授 藤原 直樹, 教授 雨澤 浩史 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
74

Applications of ordered mesoporous metal oxides : energy storage, adsorption, and catalysis

Ren, Yu January 2010 (has links)
The experimental data and results demonstrated here illustrate the preparation and application of mesoporous metal oxides in energy storage, adsorption, and catalysis. First, a new method of controlling the pore size and wall thickness of mesoporous silica was developed by controlling the calcination temperature. A series of such silica were used as hard templates to prepare the mesoporous metal oxide Co₃O₄. Using other methods, such as varying the silica template hydrothermal treatment temperature, using colloid silica, varying the materials ratio etc., a series of mesoporous β-MnO₂ with different pore size and wall thickness were prepared. By using these materials it has been possible to explore the influence of pore size and wall thickness on the rate of lithium intercalation into mesoporous electrode. There is intense interest in lithium intercalation into titanates due to their potential advantages (safety, rate) replacing graphite for new generation Li-ion battery. After the preparation of an ordered 3D mesoporous anatase the lithium intercalation as anode material has been investigated. To the best of our knowledge, there are no reports of ordered crystalline mesoporous metal oxides with microporous walls. Here, for the first time, the preparation and characterization of three dimensional ordered crystalline mesoporous α-MnO₂ with microporous wall was described, in which K+ and KIT-6 mesoporous silica act to template the micropores and mesopores, respectively. It was used as a cathode material for Li-ion battery. Its adsorption behavior and magnetic property was also surveyed. Following this we described the preparation and characterization of mesoporous CuO and reduced Cu[subscript(x)]O, and demonstrated their application in NO adsorption and delivery. Finally a series of crystalline mesoporous metal oxides were prepared and evaluated as catalysts for the CO oxidation.
75

Etude du vieillissement de batteries lithium-ion fonctionnant à haute température par Spectroscopie Photoélectronique à rayonnement X (XPS). / Study of aging mechanisms of lithium-ion batteries operating at high temperature by X-ray Photoelectron Spectroscopy.

Bodenes, Lucille 21 December 2012 (has links)
Les accumulateurs lithium-ion occupent aujourd’hui une place prédominante dans le domaine du stockage de l’énergie. Leur fonctionnement et les phénomènes impliqués dans leur vieillissement sont relativement bien connus, aux températures d’utilisation proches de la température ambiante. Cependant, leur utilisation dans le cadre d’applications dites « haute température », telles que le forage pétrolier, la stérilisation « in situ » ou la géolocalisation, nécessite la levée de certains verrous techniques : la stabilité de l’électrolyte et des liants d’électrodes, la compatibilité électrolyte/séparateur, le vieillissement des matériaux et l’évolution des interfaces. Les accumulateurs sélectionnés pour ces travaux de thèse sont constitués d’un matériau lamellaire de type Li(Ni,Mn,Co)O2 pour l’électrode positive, et de graphite pour l’électrode négative. Afin de décrire les phénomènes de vieillissement associés à une telle utilisation, des analyses de surface ont été menées par Spectroscopie Photoélectronique à rayonnement X sur les électrodes issues d’accumulateurs cyclés à haute température. Ces analyses ont permis de mettre en évidence la dégradation du liant de l’électrode positive et l’évolution des interfaces électrodes/électrolyte à 85 et 120°C, et d’améliorer le choix des composants des batteries pour de meilleures performances à haute température. / Nowadays, lithium-ion batteries occupy a prominent place in the field of energy storage. Phenomena involved in their aging mechanisms are quite well known for operating temperatures close to room temperature. However, their use at high temperatures for applications such as oil drilling, "in situ" sterilization or freight tracking requires some technical issues to be improved: stability of the electrolyte and electrode binders, compatibility electrolyte / separator, aging of active materials and changes of the interfaces. The batteries selected for this thesis consist of a Li(Ni,Mn,Co)O2 lamellar material at the positive electrode and graphite at the negative electrode. To describe aging phenomena related to high temperature, surface analyzes were carried out by X-ray Photoelectron Spectroscopy on the electrodes of batteries cycled at 85 and 120°C. These analyzes reveal the degradation of the positive electrode’s binder, and the changes of electrodes/electrolyte’s interfaces at high temperature compared to ambient temperature.
76

Propriétés de transport des sels de lithium LiTDI et LiFSI : application à la formulation d'électrolytes optimisés pour batteries Li-ion / Transport properties of LiTDI and LiFSI and the use of these lithium salts in the formulation of promising electrolytes for Li-ion batteries

Berhaut, Christopher Logan 09 December 2016 (has links)
La plupart des batteries Li-ion aujourd’hui utilisent des électrolytes à base de LiPF6 un sel de lithium connu pour son instabilité chimique au-delà de 60°C car il se dégrade en libérant PF5 et LiF. En présence de traces d’eau il génère en plus des composés oxyfluorophosphorés et du HF qui peut être dommageable à la fois pour les performances et pour le vieillissement de l’accumulateur. Plusieurs sels sont candidats au remplacement de LiPF6, notamment ceux basés sur les anions fluorosulfonylamidures et les anions de Hückel. Ce travail concerne l’étude des propriétés physico-chimiques et de transport des électrolytes à base de 4,5-dicyano-2- (trifluoromethyl)imidazolide de lithium (LiTDI) et bis(fluorosulfonyl)amidure de lithium (LiFSI) pour une utilisation au sein d’accumulateurs de type Li-ion. Dans ce travail il a d’abord été montré que LiTDI n’est que faiblement dissocié dans les mélanges de carbonates d’alkyles utilisés dans les batteries Li-ion tels que le binaire (EC/DMC) ce qui limite sa conductivité. Pour pouvoir remédier à cet inconvénient, une étude des phénomènes de solvatation et d’associations ioniques a été menée et a conduit à proposer un mélange ternaire de solvants (EC/GBL/MP) dans lequel LiTDI est plus dissocié. Le mélange ternaire proposé améliore à la fois les propriétés de transport et les caractéristiques thermiques de l’électrolyte sans compromettre le domaine de stabilité chimique et électrochimique. Enfin, le nouvel électrolyte EC/GBL/MP contenant LiTDI, a été testé en accumulateurs dans les conditions opératoires usuelles (régime C/10 et température ambiante) et sévères (régime 10C et des températures allant de -20 °C à 60 °C). Le problème de corrosion de l’aluminium de LiFSI a aussi été pris en compte. Un électrolyte prometteur à base d’un mélange LiTDI/LiFSI montrant de meilleures performances que chaque sel utilisé séparément dans EC/DMC a été présenté. Les conclusions de cette thèse prouvent que LiTDI ou LiFSI peuvent être utilisés comme sels de lithium dans les électrolytes pour accumulateurs Li-ion. / Most of the Li-ion batteries used in electrical devices contain a solution of LiPF6 in alkylcarbonate solvents with the risk of releasing PF5 at elevated temperatures and HF in the presence of water. Several salts are candidates for the replacement of LiPF6, including those based on fluorosulfonylamides and Hückel anions. This work concerns the study of physicochemical and transport properties of lithium 4,5-dicyano-2- (trifluoromethyl)imidazolide (LiTDI) and lithium bis(fluorosulfonyl)amide (LiFSI) based electrolytes and their use in Li-ion battery. First it was revealed that LiTDI is only weakly dissociated in alkylcarbonate mixtures used in Li-ion batteries such as EC/DMC limiting its conductivity. To overcome this disadvantage, a study of the solvation phenomena and of ionic association within the electrolytes was conducted. This study led to a ternary mixture of solvents (EC/GBL/MP) in which LiTDI is more dissociated. This new solvent mixture improves both the transport properties and the thermal stability of the LiTDI based electrolyte without compromising its chemical and electrochemical stability. Finally, the new LiTDI in EC/GBL/MP electrolyte was tested in NMC/graphite batteries under normal (C/10 rate and room temperature) and severe (10C rate and temperatures varying from - 20 ° C to 60 °C) operating conditions. The aluminium corrosion problem encountered by LiFSI based electrolytes was taken into account and a LiTDI/LiFSI salt mixture based electrolyte showing promising results was presented. The findings of this thesis show that LiTDI or LiFSI can be used as lithium salts in electrolytes for Li-ion batteries.
77

The Challenge of Probing Lithium Insertion Mechanisms in Cathode Materials

Höwing, Jonas January 2004 (has links)
<p>The Li-ion battery has, from its commercialisation in the early 1990's, now become the most widely used power source for portable low-power electronics: laptops, cellular phones and MP3-players are a few examples. To further develop existing and find new electrode materials for these batteries, it is vital to understand the lithium insertion/extraction mechanisms taking place during battery operation. In this thesis, single-crystal X-ray diffraction has been used to investigate lithium insertion/extraction mechanisms in the cathode materials V<sub>6</sub>O<sub>13</sub> and LiFePO<sub>4</sub>. A novel single-crystal electrochemical cell for <i>in situ</i> single-crystal X-ray diffraction studies has also been developed.</p><p>The phases Li<sub>3</sub>V<sub>6</sub>O<sub>13</sub> and Li<sub>3+x</sub>V<sub>6</sub>O<sub>13</sub>, 0<x<1, both contain a disordered lithium ion. A low-temperature study of Li<sub>3.24</sub>V<sub>6</sub>O<sub>13</sub> (at 95 K) shows that this disorder is static rather than dynamic; the lithium ion is equally distributed above and below an inversion centre in the centrosymmetric V<sub>6</sub>O<sub>13</sub> host structure. Short-range-ordering between this disordered lithium ion and the lithium ion inserted into Li<sub>3</sub>V<sub>6</sub>O<sub>13</sub> gives rise to solid-solution behaviour not observed earlier in the Li<sub>x</sub>V<sub>6</sub>O<sub>13</sub> system. A model is proposed for the lithium insertion mechanism up to the end-member composition Li<sub>6</sub>V<sub>6</sub>O<sub>13</sub>.</p><p>Lithium has also been electrochemically extracted from LiFePO<sub>4</sub> single crystals. On the basis of the shapes of the LiFePO<sub>4</sub> and FePO<sub>4</sub> reflections, it is concluded that FePO<sub>4</sub> is formed at the crystal surface and that the LiFePO<sub>4</sub>/FePO<sub>4</sub> interface propagates into the crystal. This is in agreement with an earlier proposed model for lithium extraction from LiFePO<sub>4</sub> particles.</p><p>Initial experiments with the newly developed single-crystal electrochemical cell for <i>in situ</i> single-crystal X-ray diffraction demonstrate that it is possible to insert lithium into a single crystal of V<sub>6</sub>O<sub>13</sub> and then collect single-crystal X-ray diffraction data. The method needs further development but promises to become a powerful tool for studying lithium insertion/extraction mechanisms.</p>
78

Low-Cost Iron-Based Cathode Materials for Large-Scale Battery Applications

Nytén, Anton January 2006 (has links)
<p>There are today clear indications that the Li-ion battery of the type currently used worldwide in mobile-phones and lap-tops is also destined to soon become the battery of choice in more energy-demanding concepts such as electric and electric hybrid vehicles (EVs and EHVs). Since the currently used cathode materials (typically of the Li(Ni,Co)O<sub>2</sub>-type) are too expensive in large-scale applications, these new batteries will have to exploit some much cheaper transition-metal. Ideally, this should be the very cheapest - iron(Fe) - in combination with a graphite(C)-based anode. In this context, the obvious Fe-based active cathode of choice appears to be LiFePO<sub>4</sub>. A second and in some ways even more attractive material - Li<sub>2</sub>FeSiO<sub>4</sub> - has emerged during the course of this work.</p><p>An effort has here been made to understand the Li extraction/insertion mechanism on electrochemical cycling of Li<sub>2</sub>FeSiO<sub>4</sub>. A fascinating picture has emerged (following a complex combination of Mössbauer, X-ray diffraction and electrochemical studies) in which the material is seen to cycle between Li<sub>2</sub>FeSiO<sub>4</sub> and LiFeSiO<sub>4</sub>, but with the structure of the original Li<sub>2</sub>FeSiO<sub>4</sub> transforming from a metastable short-range ordered solid-solution into a more stable long-range ordered structure during the first cycle. Density Functional Theory calculations on Li<sub>2</sub>FeSiO<sub>4</sub> and the delithiated on LiFeSiO<sub>4</sub> structure provide an interesting insight into the experimental result.</p><p>Photoelectron spectroscopy was used to study the surface chemistry of both carbon-treated LiFePO<sub>4</sub> and Li<sub>2</sub>FeSiO<sub>4</sub> after electrochemical cycling. The surface-layer on both materials was concluded to be very thin and with incomplete coverage, giving the promise of good long-term cycling.</p><p>LiFePO<sub>4</sub> and Li<sub>2</sub>FeSiO<sub>4</sub> should both be seen as highly promising candidates as positive-electrode materials for large-scale Li-ion battery applications.</p>
79

The Challenge of Probing Lithium Insertion Mechanisms in Cathode Materials

Höwing, Jonas January 2004 (has links)
The Li-ion battery has, from its commercialisation in the early 1990's, now become the most widely used power source for portable low-power electronics: laptops, cellular phones and MP3-players are a few examples. To further develop existing and find new electrode materials for these batteries, it is vital to understand the lithium insertion/extraction mechanisms taking place during battery operation. In this thesis, single-crystal X-ray diffraction has been used to investigate lithium insertion/extraction mechanisms in the cathode materials V6O13 and LiFePO4. A novel single-crystal electrochemical cell for in situ single-crystal X-ray diffraction studies has also been developed. The phases Li3V6O13 and Li3+xV6O13, 0&lt;x&lt;1, both contain a disordered lithium ion. A low-temperature study of Li3.24V6O13 (at 95 K) shows that this disorder is static rather than dynamic; the lithium ion is equally distributed above and below an inversion centre in the centrosymmetric V6O13 host structure. Short-range-ordering between this disordered lithium ion and the lithium ion inserted into Li3V6O13 gives rise to solid-solution behaviour not observed earlier in the LixV6O13 system. A model is proposed for the lithium insertion mechanism up to the end-member composition Li6V6O13. Lithium has also been electrochemically extracted from LiFePO4 single crystals. On the basis of the shapes of the LiFePO4 and FePO4 reflections, it is concluded that FePO4 is formed at the crystal surface and that the LiFePO4/FePO4 interface propagates into the crystal. This is in agreement with an earlier proposed model for lithium extraction from LiFePO4 particles. Initial experiments with the newly developed single-crystal electrochemical cell for in situ single-crystal X-ray diffraction demonstrate that it is possible to insert lithium into a single crystal of V6O13 and then collect single-crystal X-ray diffraction data. The method needs further development but promises to become a powerful tool for studying lithium insertion/extraction mechanisms.
80

Low-Cost Iron-Based Cathode Materials for Large-Scale Battery Applications

Nytén, Anton January 2006 (has links)
There are today clear indications that the Li-ion battery of the type currently used worldwide in mobile-phones and lap-tops is also destined to soon become the battery of choice in more energy-demanding concepts such as electric and electric hybrid vehicles (EVs and EHVs). Since the currently used cathode materials (typically of the Li(Ni,Co)O2-type) are too expensive in large-scale applications, these new batteries will have to exploit some much cheaper transition-metal. Ideally, this should be the very cheapest - iron(Fe) - in combination with a graphite(C)-based anode. In this context, the obvious Fe-based active cathode of choice appears to be LiFePO4. A second and in some ways even more attractive material - Li2FeSiO4 - has emerged during the course of this work. An effort has here been made to understand the Li extraction/insertion mechanism on electrochemical cycling of Li2FeSiO4. A fascinating picture has emerged (following a complex combination of Mössbauer, X-ray diffraction and electrochemical studies) in which the material is seen to cycle between Li2FeSiO4 and LiFeSiO4, but with the structure of the original Li2FeSiO4 transforming from a metastable short-range ordered solid-solution into a more stable long-range ordered structure during the first cycle. Density Functional Theory calculations on Li2FeSiO4 and the delithiated on LiFeSiO4 structure provide an interesting insight into the experimental result. Photoelectron spectroscopy was used to study the surface chemistry of both carbon-treated LiFePO4 and Li2FeSiO4 after electrochemical cycling. The surface-layer on both materials was concluded to be very thin and with incomplete coverage, giving the promise of good long-term cycling. LiFePO4 and Li2FeSiO4 should both be seen as highly promising candidates as positive-electrode materials for large-scale Li-ion battery applications.

Page generated in 0.0509 seconds