Spelling suggestions: "subject:"eie algebroids"" "subject:"eie algebro""
1 |
O algebroide classificante de uma estrutura geometrica / The classifying Lie algebroid of a geometric structureStruchiner, Ivan 12 August 2018 (has links)
Orientadores: Rui Loja Fernandes, Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T16:18:57Z (GMT). No. of bitstreams: 1
Struchiner_Ivan_D.pdf: 1576350 bytes, checksum: 7c87189c22a89931d1a38ac563188723 (MD5)
Previous issue date: 2009 / Resumo: O objetivo desta tese é mostrar como utilizar algebróides de Lie e grupóides de Lie para compreender aspectos das teorias de invariantes, simetrias e espaços de moduli de estruturas geométricas de tipo finito. De uma forma geral, podemos descrever tais estruturas como sendo objetos, definidos em uma variedade, que podem ser caracterizados por correferenciais (possivelmente em outra variedade). Exemplos incluem G-estruturas de tipo finito e geometrias de Cartan. Para uma classe de estruturas geométricas de tipo finito cujo espaço de moduli (dos germes) de seus elementos tem dimensão finita, construímos um algebróide de Lie A X, chamado de algebróide de Lie classificante, que satisfaz as seguintes propriedades: 1. Para cada ponto na base X corresponde um germe de uma estrutura geométrica pertencente à classe. 2. Dois destes germes são isomorfos se e somente se eles correspondem ao mesmo ponto de X. 3. A álgebra de Lie de isotropia de A num ponto x é a álgebra de Lie das simetrias infinitesimais da estrutura geométrica correspondente. 4. Se dois germes de estruturas geométricas pertencem à mesma estrutura geométrica global numa variedade conexa, então eles correspondem a pontos na mesma órbita de A em X. Além do mais, quando o algebróide de Lie classificante é integrável, o seu grupóide de Lie pode ser utilizado para construir modelos explícitos das geometrias na classe sendo descrita. Estes modelos são universais, ou seja, qualquer outra estrutura geométrica da classe é localmente isomorfa a um destes modelos, e globalmente equivalentes, a menos de recobrimento, a um subconjunto aberto de um desses modelos. No caso em que a estrutura geométrica é uma G-estrutura de tipo finito, damos uma descrição detalhada dessa correspondência. Uma das conseqüências da nossa construção é que o algebróide de Lie classificante pode ser usado para obter invariantes das estruturas geométricas correspondentes. Para ilustrar, apresentamos dois exemplos de invariantes que são induzidos pela cohomologia do algebróide de Lie. Para demonstrar os resultados mencionados acima, definimos as noções de forma de Maurer-Cartan em grupóides de Lie e de equação de Maurer-Cartan para um formas diferenciais com valores num algebróide de Lie. A seguir, provamos que a forma de Maurer-Cartan em um grupóide de Lie satisfaz uma propriedade universal análoga à propriedade satisfeita pela forma de Maurer-Cartan em um grupo de Lie. Para concluir esta tese, descrevemos diversos exemplos relacionados as conexões sem torção em G-estruturas. Nossa classe principal de exemplos são as conexões simpléticas especiais para as quais incluímos uma discussão detalhada. / Abstract: The purpose of this thesis is to show how to use Lie algebroids and Lie groupoids to get a better understanding of problems concerning symmetries, invariants and moduli spaces of geometric structures of finite type. In general terms, these structures are objects defined on manifolds which can be characterized by a coframe (on a possibly different manifold). Examples include G-structures of finite type and Cartan geometries. For a given class of such structures whose moduli space (of germs) of elements is finite dimensional, we are able to construct a Lie algebroid A ! X, called the classifying Lie algebroid, which has the following properties: 1. To each point on the base X there corresponds a germ of a geometric structure which belongs to the class. 2. Two such germs are isomorphic if and only if they correspond to the same point in X. 3. The isotropy Lie algebra of A at a point x is the symmetry Lie algebra of the corresponding geometric structure. 4. If two germs of the geometric structure belong to the same connected manifold, then they correspond to points on the same orbit of A in X. Moreover, when the classifying Lie algebroid is integrable, its Lie groupoid can be used to construct explicit models of the geometries in the class being described. These models turn out to be universal in the sense that every other geometric structure in the class is locally isomorphic to one of these models, and globally equivalent up to covering to an open set of one of these models. We describe this throughly when the geometric structure in consideration is a finite type G-structure. One of the consequences of our construction is that the classifying Lie algebroid can be used to obtain invariants of the corresponding geometric structures. We present two examples of invariants that are induced by the cohomology of the Lie algebroid. The method that we use to prove the statements above is to define the notion of a Maurer-Cartan form on a Lie groupoid, as well as a Maurer-Cartan equation for Lie algebroid valued differential one forms. We then prove a universal property for the Maurer-Cartan form of a Lie groupoid. We believe that these results are of independent interest. To conclude this thesis, we give a description of several examples related to torsionfree connections on G-structures. Our main class of examples are the special symplectic connections for which we include a detailed discussion. / Doutorado / Geometria Diferencial / Doutor em Matemática
|
2 |
Generalized geometry of type BnRubio, Roberto January 2014 (has links)
Generalized geometry of type B<sub>n</sub> is the study of geometric structures in T+T<sup>*</sup>+1, the sum of the tangent and cotangent bundles of a manifold and a trivial rank 1 bundle. The symmetries of this theory include, apart from B-fields, the novel A-fields. The relation between B<sub>n</sub>-geometry and usual generalized geometry is stated via generalized reduction. We show that it is possible to twist T+T<sup>*</sup>+1 by choosing a closed 2-form F and a 3-form H such that dH+F<sup>2</sup>=0. This motivates the definition of an odd exact Courant algebroid. When twisting, the differential on forms gets twisted by d+Fτ+H. We compute the cohomology of this differential, give some examples, and state its relation with T-duality when F is integral. We define B<sub>n</sub>-generalized complex structures (B<sub>n</sub>-gcs), which exist both in even and odd dimensional manifolds. We show that complex, symplectic, cosymplectic and normal almost contact structures are examples of B<sub>n</sub>-gcs. A B<sub>n</sub>-gcs is equivalent to a decomposition (T+T<sup>*</sup>+1)<sub>ℂ</sub>= L + L + U. We show that there is a differential operator on the exterior bundle of L+U, which turns L+U into a Lie algebroid by considering the derived bracket. We state and prove the Maurer-Cartan equation for a B<sub>n</sub>-gcs. We then work on surfaces. By the irreducibility of the spinor representations for signature (n+1,n), there is no distinction between even and odd B<sub>n</sub>-gcs, so the type change phenomenon already occurs on surfaces. We deal with normal forms and L+U-cohomology. We finish by defining G<sup>2</sup><sub>2</sub>-structures on 3-manifolds, a structure with no analogue in usual generalized geometry. We prove an analogue of the Moser argument and describe the cone of G<sup>2</sup><sub>2</sub>-structures in cohomology.
|
Page generated in 0.0578 seconds