• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 22
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 184
  • 184
  • 117
  • 50
  • 40
  • 28
  • 26
  • 22
  • 21
  • 19
  • 18
  • 16
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Synthesis, characterization, and kinetics of isomerization, C-H and P-C bond activation for unsaturated diphosphine-coordinated triosmium carbonyl clusters.

Wu, Guanmin 05 1900 (has links)
Substitution of MeCN ligands in the activated cluster Os3(CO)10(MeCN)2 by the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2 (cDPPEn) or 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) proceeds rapidly at room temperature to furnish the ligand-bridged cluster 1,2-Os3(CO)10(P-P) (P-P represents cDPPEn or bpcd). Heating 1,2-Os3(CO)10(P-P) leads to the formation of the thermodynamically more stable chelating isomer 1,1-Os3(CO)10(P-P). Each compound of Os3(CO)10(P-P) has been characterized by x-ray diffraction, IR, 31P NMR and 1H NMR. Ligand isomerization kinetics have been investigated by UV-VIS and 31P NMR (for cDPPEn) or 1H NMR (for bpcd) spectroscopies. The isomerization mechanism is discussed based on the activation parameters and CO inhibition (for cDPPEn) or ligand trapping experiments (for bpcd). Thermolysis of 1,1-Os3(CO)10(bpcd) in refluxing toluene gives the hydrido cluster HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] and the benzyne cluster HOs3(CO)8(μ3-C6H4)[μ2,η1-PPhC=C(PPh2)C(O)CH2C(O)]. Photolysis of 1,1-Os3(CO)10(bpcd) using near UV light affords HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] as the sole product. HOs3(CO)8(μ3-C6H4)[μ2,η1-PPhC=C(PPh2)C(O)CH2C(O)] has been characterized in solution by IR and NMR spectroscopies. Furthermore its molecular structure has been determined by X-ray crystallography. Reversible C-H bond formation in HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] is demonstrated by ligand trapping studies to give 1,1-Os3(CO)9L(bpcd) (where L = CO, phosphine) via the unsaturated intermediate 1,1-Os3(CO)9(bpcd). The kinetics for reductive coupling in HOs3(CO)9[γ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] and DOs3(CO)9[μ-(PPh2-d10)C=C{P(Ph-d5)(C6D4)}C(O)CH2C(O)] in the presence of PPh3 give rise to a kH/kD value of 0.88, whose magnitude supports the existence of a preequilibrium involving the hydride(deuteride) cluster and a transient arene-bound Os3 species that precedes the rate-limiting formation of 1,1-Os3(CO)9(bpcd). Strong proof for the proposed hydride(deuteride)/arene preequilibrium has been obtained from photochemical studies employing the isotopically labeled cluster 1,1-Os3(CO)10(bpcd-d4ortho), whose bpcd phenyl groups each contain one ortho hydrogen and deuterium atom. Equilibrium and kinetic isotope effects in the orthometallation step has been determined by 1H NMR in photochemical studies. Kinetics for the transformation from HOs3(CO)9[μ-(PPh2)C=C{PPh(C6H4)}C(O)CH2C(O)] to HOs3(CO)8(μ3-C6H4)[μ2,η1-PPhC=C(PPh2)C(O)CH2C(O)] has been studied by UV-VIS spectroscopy for which the mechanism is discussed.
162

Small Molecule Modulation of GLUT1-Mediated Glucose Transport

Ojelabi, Ogooluwa A. 21 December 2017 (has links)
The glucose transport protein, GLUT1, is highly expressed in rapidly proliferating cells, including cancer cells, while decreased GLUT1 levels are found in diseases such as GLUT1 deficiency syndrome and Alzheimer’s. There is increased interest in developing GLUT1 inhibitors as novel anticancer therapeutics, and the discovery of compounds that directly stimulate GLUT1 function. This work investigates how small molecules stimulate and/or inhibit GLUT1-mediated glucose transport, either directly or through the AMPK pathway. Using sugar transport assays and docking analyses to explore Ligand–GLUT1 interactions and specificity of binding, we show that: 1) Ligands inhibit GLUT1 by competing with glucose for binding to the exofacial or endofacial sugar binding sites; 2) Subsaturating inhibitor concentrations stimulate sugar uptake; 3) Ligands inhibit GLUT1–, GLUT3– and GLUT4–mediated sugar uptake in HEK293 cells; and 4) Inclusion of a benzonitrile head group on endofacial GLUT1 inhibitors confers greater inhibitory potency. Furthermore, we investigated AMPK-regulated GLUT1 trafficking in cultured blood-brain barrier endothelial cells, and show that inhibition of GLUT1 internalization is not responsible for increased cell surface levels of GLUT1 observed with AMPK activation in these cells. This study provides a framework for screening candidate GLUT1 inhibitors for specificity, and for optimizing drug design and delivery. Our data on transport stimulation at low inhibitor concentrations support the idea that GLUT1 functions as a cooperative oligomer of allosteric alternating access subunits.
163

Charakterizace proteinů dráhy 2'-5' oligoadenylátů pomocí vibrační spektroskopie / Characterization of proteins of 2'-5' oligoadenylate pathway by means of vibrational spectroscopy

Víšová, Ivana January 2015 (has links)
The work concerns to structural characterization of two important proteins of 2'-5' oligoadenylate pathway participating in an immune response of organism to a viral infection. Studied proteins were ankyrin domain of mouse RNase L, the C-terminal part of human phosphodiesterase 12 and the complete human phosphodiesterase 12. The proteins were characterized by Raman spectroscopy, infrared spectroscopy, electronic circular dichroism, dynamic light scattering and in addition by two non-spectroscopic methods- differential calorimetry and electrophoresis. For each protein the secondary structures, thermal stability, weight of oligomers and generally a basic characterization by above mentioned methods were provided.
164

Evidence that ARNT plays a role in the regulation of the immunoglobulin heavy chain enhancer and identification of a putative ARNT ligand

Yavrom, Sheena 01 January 1998 (has links)
Basic helix-loop-helix (bHLH) proteins are involved in the regulation of a multitude of developmental processes including cellular differentiation, cellular proliferation and xenobiotic metabolism. Among the members of the bHLH protein family are the products of the Pan gene Pan-1, Pan-2 and ITF -1. Pan proteins have been demonstrated to be required for proper B cell development, suggesting a unique role for Pan proteins during B cell formation. In our study we tested the function of ARNT (Ah receptor nuclear translocator) at the IgH (immunoglobulin heavy chain) enhancer. We were able to determine that ARNT appears to partially down-regulate activation at the IgH enhancer by Pan-1 in transient transfection assays by cotransfection of the multimerized murine form of the IgH enhancer elements 1-1E2, !-LE3 , and 1-1ES upstream of a luciferase reporter gene, a rodent Pan-1 (human homolog E47) expression vector, and an ARNT expression vector. Furthermore, during our investigation we discovered a putative ARNT -binding ligand that increases DNA-binding activity of the ARNT homodimer. This ligand was partially characterized by UV crosslinking studies and a variety of biochemical studies using electrophoretic mobility-shift assays. Preliminary data suggests that it is hydrophilic, heat-stable, small, and non-protein.
165

Computational Modelling of Ligand Complexes with G-Protein Coupled Receptors, Ion Channels and Enzymes

Boukharta, Lars January 2014 (has links)
Accurate predictions of binding free energies from computer simulations are an invaluable resource for understanding biochemical processes and drug action. The primary aim of the work described in the thesis was to predict and understand ligand binding to several proteins of major pharmaceutical importance using computational methods. We report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 G-protein coupled receptor and a series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. Site-directed mutagenesis, homology modelling and docking were further used to characterize agonist binding to the human neuropeptide Y2 receptor, which is important in feeding behavior and an obesity drug target.  In a separate project, homology modelling was also used for rationalization of mutagenesis data for an integron integrase involved in antibiotic resistance. Blockade of the hERG potassium channel by various drug-like compounds, potentially causing serious cardiac side effects, is a major problem in drug development. We have used a homology model of hERG to conduct molecular docking experiments with a series of channel blockers, followed by molecular dynamics simulations of the complexes and evaluation of binding free energies with the linear interaction energy method. The calculations are in good agreement with experimental binding affinities and allow for a rationalization of three-dimensional structure-activity relationships with implications for design of new compounds. Docking, scoring, molecular dynamics, and the linear interaction energy method were also used to predict binding modes and affinities for a large set of inhibitors to HIV-1 reverse transcriptase. Good agreement with experiment was found and the work provides a validation of the methodology as a powerful tool in structure-based drug design. It is also easily scalable for higher throughput of compounds.
166

Computational studies of ligand-water mediated interactions in ionotropic glutamate receptors

Sahai, Michelle Asha January 2011 (has links)
Careful treatment of water molecules in ligand-protein interactions is required in many cases if the correct binding pose is to be identified for molecular docking. Water can form complex bridging networks and can play a critical role in dictating the binding mode of ligands. A particularly striking example of this can be found in the ionotropic glutamate receptors (iGluRs), a family of ligand gated ion channels that are responsible for a majority of the fast synaptic neurotransmission in the central nervous system that are thought to be essential in memory and learning. Thus, pharmacological intervention at these neuronal receptors is a valuable therapeutic strategy. This thesis relies on various computational studies and X-ray crystallography to investigate the role of ligand-water mediated interactions in iGluRs bound to glutamate and α-amino-3-hydroxy-5-methyl-4- isoxazole-propionic acid (AMPA). Comparative molecular dynamics (MD) simulations of each subtype of iGluRs bound to glutamate revealed that crystal water positions were reproduced and that all but one water molecule, W5, in the binding site can be rearranged or replaced with water molecules from the bulk. Further density functional theory calculations (DFT) have been used to confirm the MD results and characterize the energetics of W5 and another water molecule implicated in influencing the dynamics of a proposed switch in these receptors. Additional comparative studies on the AMPA subtypes of iGluRs show that each step of the calculation must be considered carefully if the results are to be meaningful. Crystal structures of two ligands, glutamate and AMPA revealed two distinct modes of binding when bound to an AMPA subtype of iGluRs, GluA2. The difference is related to the position of water molecules within the binding pocket. DFT calculations investigated the interaction energies and polarisation effects resulting in a prediction of the correct binding mode for glutamate. For AMPA alternative modes of binding have similar interaction energies as a result of a higher internal energy than glutamate. A combined MD and X-ray crystallographic study investigated the binding of the ligand AMPA in the AMPA receptor subtypes. Analysis of the binding pocket show that AMPA is not preserved in the crystal bound mode and can instead adopt an alternative mode of binding. This involves a displacement of a key water molecule followed by AMPA adopting the pose seen by glutamate. Thus, this thesis makes use of various studies to assess the energetics and dynamics of water molecules in iGluRs. The resulting data provides additional information on the importance of water molecules in mediating ligand interactions as well as identifying key water molecules that can be useful in the de novo design of new selective drugs against iGluRs.
167

Caractérisation de l'interaction protéine-ligand sous l'effet de la pression isisatique ou dynamique : application à l’inclusion de composés hydrophobes dans des nanostructures élaborées à partir de protéines du lait. / Effects of isostatic or dynamic high-pressure on the caracterisation of protein-ligand interaction : Application to hydrophobic coumpound embbeding into nanostructures elaborated from milk proteins.

Blayo, Claire 04 September 2012 (has links)
Résumé : L'interaction entre la β-Lactoglobuline (β-Lg) et le rétinol ou entre les micelles de phosphocaséines (PC) et le rétinol à un pH proche de la neutralité, a été étudiée à pression atmosphérique et sous pression isostatique jusqu'à 400 MPa. Les constantes de dissociation et le nombre de sites de liaison ont été calculés indiquant des différences d'affinité en fonction de la structure protéique. A 25°C, des pressions inférieures à 150 MPa favorisent l'association β-Lgrétinol (rapport molaire β-Lg/rétinol : 1/1). A ≥ 150 MPa le complexe se dissocie. A 350 MPa, la β-Lg est dénaturée et le complexe irréversiblement dissocié. Le complexe PCrétinol (rapport molaire PC/rétinol : 1/1) reste au contraire formé après un traitement à 400 MPa et 25°C, bien que la pression induise des phénomènes de dissociation/réassociation des assemblages micellaires à ≥ 100 MPa. L'interaction PCrétinol stabiliserait plutôt les micelles de PC vis-à-vis de la pression, de même qu'une température de pressurisation modérée (35°C) comparativement à une température plus basse (15°C). Un isolat protéique de lactosérum (IPL) en dispersion dans l'eau à 10% (p/p) de protéines (pH 6,5) et en présence d'acétate de rétinol (AcRet) (rapport molaire β-Lg/AcRet : 10/1) a été traité par (i) haute-pression isostatique (HP) (350 MPa, 25°C, 15 min), (ii) traitement thermique de courte durée (TTCD) (75°C, 4 s) ou (iii) homogénéisation à ultra-haute pression (UHPH) (300 MPa, Tin = 24°C). Les trois traitements permettent de former des agrégats de β-Lg capables de retenir l'acétate de rétinol, mais avec une efficacité différente dépendant probablement des mécanismes d'agrégation induit par le chauffage (TTCD), la pression isostatique (HP) ou dynamique (UHPH). Des dispersions à 2,38% (p/p) en phosphocaséines (pH 6,6) en présence d'acétate de rétinol (rapport molaire PC/AcRet : 5/1) ont été traitées par (i) HP (300 MPa, 14°C ou 34°C, 15 min), ou (ii) UHPH (300 MPa, Tin = 14°C). Ces deux traitements favorisent la rétention de l'acétate de rétinol par les micelles de PC pouvant ainsi servir de cargo pour véhiculer des molécules bioactives. Mots clefs : haute pression isostatique, haute pression dynamique, homogénéisation à ultra-haute pression, fluorescence, β-Lactoglobuline, micelles de phosphocaséines, rétinol, acétate de rétinol, agrégats protéiques, interaction protéine-ligand. / Abstract: The binding of retinol to native β-Lactoglobulin (β-Lg) or phosphocasein (PC) micelles at pH close to neutral was studied at atmospheric pressure or under isostatic high-pressure. The dissociation constants and number of binding sites were calculated indicating that difference in retinol affinity depended on protein structure. At 25°C, pressure level < 150 MPa promoted β-Lgretinol association (β-Lg/retinol molar ratio: 1/1). At ≥ 150 MPa, the complex dissociated. At 350 MPa, β-Lg was denatured and the complex irreversibly dissociated. PC and retinol (PC/retinol molar ratio: 1/1) remained associated after pressurisation at 400 MPa and 25°C, while pressure induced dissociation/reassociation phenomena of micelle assemblies. The binding of retinol to PC stabilised micelles towards pressure, as well as moderate temperature of pressurisation (35°C) compared to lower temperature (15°C).A whey protein isolate (WPI) dispersed in water at 10% (w/w) proteins (pH 6.5) in the presence of retinyl acetate (RetAc) (β-Lg/RetAc molar ratio: 10/1) was processed by (i) isostatic high-pressure (HP) (350 MPa, 25°C, 15 min), (ii) short-time thermal treatment (STTT) (75°C, 4 s) or (iii) ultra-high pressure homogenisation (UHPH) (300 MPa, Tin = 24°C). All processing produced β-Lg aggregates able to retain RetAc, but with different efficiency depending on aggregation mechanisms induced by heating (STTT), isostatic high-pressure (HP) or dynamic high-pressure (UHPH). Phosphocaseins dispersed at 2.38% (w/w) proteins (pH 6.6) in the presence of RetAc (PC/RetAc molar ratio: 5/1) were processed by (i) HP (300 MPa, 14°C or 34°C, 15 min), or (ii) UHPH (300 MPa, Tin = 14°C). Both treatments promoted RetAc retention by phosphocasein micelles that can be used as cargoes to transport bioactive molecules.Keywords: isostatic high-pressure, dynamic high-pressure, ultra-high pressure homogenisation, fluorescence, β-Lactoglobulin, phosphocasein micelles, retinol, retinyl acetate, protein aggregates, protein-ligand binding.Discipline: Biochimie, Chimie et Technologie des Aliments.Thèse préparée à : Université Montpellier 2 – Equipe de Biochimie et Technologie Alimentaire – UMR IATE 1208 – Pôle EVAP – Place E. Bataillon, 34095 Montpellier, France.
168

Computational Analysis of Molecular Recognition Involving the Ribosome and a Voltage Gated K+ Channel

Andér, Martin January 2009 (has links)
Over the last few decades, computer simulation techniques have been established as an essential tool for understanding biochemical processes. This thesis deals mainly with the application of free energy calculations to ribosomal complexes and a cardiac ion channel. The linear interaction energy (LIE) method is used to explore the energetic properties of the essential process of codon–anticodon recognition on the ribosome. The calculations show the structural and energetic consequences and effects of first, second, and third position mismatches in the ribosomal decoding center. Recognition of stop codons by ribosomal termination complexes is fundamentally different from sense codon recognition. Free energy perturbation simulations are used to study the detailed energetics of stop codon recognition by the bacterial ribosomal release factors RF1 and RF2. The calculations explain the vastly different responses to third codon position A to G substitutions by RF1 and RF2. Also, previously unknown highly specific water interactions are identified. The GGQ loop of ribosomal RFs is essential for its hydrolytic activity and contains a universally methylated glutamine residue. The structural effect of this methylation is investigated. The results strongly suggest that the methylation has no effect on the intrinsic conformation of the GGQ loop, and, thus, that its sole purpose is to enhance interactions in the ribosomal termination complex. A first microscopic, atomic level, analysis of blocker binding to the pharmaceutically interesting potassium ion channel Kv1.5 is presented. A previously unknown uniform binding mode is identified, and experimental binding data is accurately reproduced. Furthermore, problems associated with pharmacophore models based on minimized gas phase ligand conformations are highlighted. Generalized Born and Poisson–Boltzmann continuum models are incorporated into the LIE method to enable implicit treatment of solvent, in an effort to improve speed and convergence. The methods are evaluated and validated using a set of plasmepsin II inhibitors.
169

Multivariate design of molecular docking experiments : An investigation of protein-ligand interactions

Andersson, David January 2010 (has links)
To be able to make informed descicions regarding the research of new drug molecules (ligands), it is crucial to have access to information regarding the chemical interaction between the drug and its biological target (protein). Computer-based methods have a given role in drug research today and, by using methods such as molecular docking, it is possible to investigate the way in which ligands and proteins interact. Despite the acceleration in computer power experienced in the last decades many problems persist in modelling these complicated interactions. The main objective of this thesis was to investigate and improve molecular modelling methods aimed to estimate protein-ligand binding. In order to do so, we have utilised chemometric tools, e.g. design of experiments (DoE) and principal component analysis (PCA), in the field of molecular modelling. More specifically, molecular docking was investigated as a tool for reproduction of ligand poses in protein 3D structures and for virtual screening. Adjustable parameters in two docking software were varied using DoE and parameter settings were identified which lead to improved results. In an additional study, we explored the nature of ligand-binding cavities in proteins since they are important factors in protein-ligand interactions, especially in the prediction of the function of newly found proteins. We developed a strategy, comprising a new set of descriptors and PCA, to map proteins based on their cavity physicochemical properties. Finally, we applied our developed strategies to design a set of glycopeptides which were used to study autoimmune arthritis. A combination of docking and statistical molecular design, synthesis and biological evaluation led to new binders for two different class II MHC proteins and recognition by a panel of T-cell hybridomas. New and interesting SAR conclusions could be drawn and the results will serve as a basis for selection of peptides to include in in vivo studies.
170

Advances in Ligand Binding Predictions using Molecular Dynamics Simulations

Keränen, Henrik January 2014 (has links)
Biochemical processes all involve associations and dissociations of chemical entities. Understanding these is of substantial importance for many modern pharmaceutical applications. In this thesis, longstanding problems with regard to ligand binding are treated with computational methods, applied to proteins of key pharmaceutical importance. Homology modeling, docking, molecular dynamics simulations and free-energy calculations are used here for quantitative characterization of ligand binding to proteins. By combining computational tools, valuable contributions have been made for pharmaceutically relevant areas: a neglected tropical disease, an ion channel anti-drug-target, and GPCR drug-targets. We report three compounds inhibiting cruzain, the main cysteine protease of the protozoa causing Chagas’ disease. The compounds were found through an extensive virtual screening study and validated with experimental enzymatic assays. The compounds inhibit the enzyme in the μM-range and are therefore valuable in further lead optimization studies. A high-resolution crystal structure of the BRICHOS domain is reported, together with molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry studies. This work revealed a plausible mechanism for how the chaperone activity of the domain may operate. Rationalization of structure-activity relationships for a set of analogous blockers of the hERG potassium channel is given. A homology model of the ion channel was used for docking compounds and molecular dynamics simulations together with the linear interaction energy method employed for calculating the binding free-energies. The three-dimensional coordinates of two GPCRs, 5HT1B and 5HT2B, were derived from homology modeling and evaluated in the GPCR Dock 2013 assessment. Our models were in good correlation with the experimental structures and all of them placed among the top quarter of all models assessed.  Finally, a computational method, based on molecular dynamics free-energy calculations, for performing alanine scanning was validated with the A2A adenosine receptor bound to either agonist or antagonist. The calculated binding free-energies were found to be in good agreement with experimental data and the method was subsequently extended to non-alanine mutations. With extensive experimental mutation data, this scheme is a valuable tool for quantitative understanding of ligand binding and can ultimately be used for structure-based drug design.

Page generated in 0.0964 seconds