Spelling suggestions: "subject:"iigands"" "subject:"igands""
1021 |
Indigo mono- and diimine ligands as proton and electron reservoirsHofsommer, Dillon T. 07 August 2019 (has links)
Indigo N,N’-diarylimine (Nindigo) and indigo N-arylimine (Mindigo) are redox-active ligands which exhibit near-infrared absorption and can accommodate up to five ligand charge states. This dissertation explores the coordination chemistry of these ligands to further understand the role that metal-ligand combinations play on ligand-centered properties, which include electrochemical potentials, UV-Vis-NIR absorption, pKa values, hydricities, and NH bond strengths at different ligand charge states.
A series of cis-Nindigo palladium complexes containing acetylacetonate (acac) and hexafluoroacetylacetonate (hfac) ligands were synthesized. The acac complexes were easier to oxidize by 0.11 to 0.16 V and absorbed at lower wavelengths compared to their hfac analogues. Complexes using indigo bis(4-methylphenylimine) were more easily reduced than complexes of indigo bis(2,6-dimethylphenylimine).
Cis- and trans-Mindigo complexes of palladium acac and hfac were synthesized as the first coordination complexes of Mindigo. Trans-Mindigo complexes were more difficult to reduce by 0.33 to 0.37 V and absorbed at lower wavelengths than their cis-Mindigo counterparts. Cis-Mindigo complexes were easier to reduce and harder to oxidize than the corresponding cis-Nindigo complexes.
The NH bond strengths of cis-Nindigo complexes containing Pd(acac) and Ru(bipy)2 (bipy = 2,2’-bipyridyl) fragments were determined through a potential-pKa diagram in tetrahydrofuran and acetonitrile, respectively. The NH bond strength and hydricity values of the Pd(acac) complex were comparable to the values of diaryl amines. The NH bond strength and hydricity of the Ru(bipy)2 complex were substantially smaller due to the lower oxidation potentials of this complex. In both cases, the ligand’s NH bond strengths were not affected greatly by the ligand’s charge state.
Ru(acac)2 complexes of neutral, aprotic cis-Nindigo and cis-Mindigo ligands were synthesized. The Nindigo/Mindigo ligand could be protonated, and the resulting complexes demonstrated substantial temperature dependence of some of their 1H NMR chemical shifts. The NH bond strengths and hydricities of the Ru(acac)2 complexes were determined using cyclic voltammetry and pKa measurements. The NH bond strengths and hydricities of these complexes are substantially smaller than the Pd(acac) and Ru(bipy)2 complexes. Collectively, these results show that Nindigo and Mindigo can act as both a proton and electron reservoirs, and the thermodynamics of proton and electron transfer can be tuned through the choice of metal and ligand combinations. / Graduate / 2020-07-17
|
1022 |
Estudo ab initio dos efeitos de ligantes e temperatura na estabilidade e meta-estabilidade de nanoclusters metálicos / Ab initio Study of the Ligands and Temperature Effects on the Stability and Meta-stability of Metallic NanoclustersGuedes Sobrinho, Diego 28 July 2017 (has links)
Nanoclusters de metais de transição (TM) com dimensões de ~1,0 nm têm atraído grande interesse em diversas aplicações tecnológicas, como microeletrônica, óptica, dispositivos magnéticos e principalmente como nanocatalisadores. Nesse contexto, a morfologia desses sistemas é um fator fundamental para otimzação de performace nessas aplicações, tendo em vista a relação direta entre as propriedades físico-químicas e a estrutura atômica do nanocluster determinada pelas condições do ambiente (temperatura e moléculas adsorvidas). No entanto, diante das limitações relativas à precisão das técnicas de caracterização experimental disponíveis atualmente, sobretudo em dimensões nanométricas, o uso de cálculos computacionais através de métodos de primeiros princípios (ab initio) e baseados na teoria do funcional da densidade se torna indispensável. Neste trabalho, foram investigados os efeitos de ligantes e temperaturas nas propriedades estruturais, eletrônicas, estabilidade e meta-estabilidade de nanoclusters de TM. (i) Os efeitos de ligantes de (PH3)n e (SH2)n (saturação gradativa em n = 1, 6, 12 e 18) adsorvidos em nanoclusters unários de Pt55 e Au55 com estruturas icosaédricas (ICO), cuboctaédricas (CUB) e desordenadas de core reduzido (DRC) foram estudados a 0K. Em fase gasosa, as estruturas DRC com 7 e 9 átomos na região do core são 5,34 eV (Pt55) e 2,20 eV (Au55) mais estáveis que modelo ICO com simetria Ih com 13 átomos no core. Os resultados mostraram que existe uma forte compressão do core catiônico pela superfície aniônica induzida por interações de Coulomb (core+-superfície-), levando ao colapso e redução de estresse das estruturas simétricas a partir da redução do número de átomos na região do core. No entanto, a estabilidade da estrutura ICO aumenta com o aumento do número de moléculas adsorvidas, de modo que DRC e ICO se tornam energeticamente degeneradas em < 0,5 eV. Além disso, a adição de ligantes na superfície aniônica reduz a transferência de cargas entre as regiões de core+-superfície-, contribuindo para a redução das interações de Coulomb e, consequentemente, aliviando o estresse interno da estrutura ICO. Resultados similares foram obtidos utilizando ligantes de trifenilfosfina (PPh3), nos quais as longas cadeias carbônicas adicionam interações laterais entre os ligantes. (ii) Nanoclusters de binários de PtnCo(55 - n) a 0K mostraram alta estabilidade em todo intervalo de composições, indicando uma correlação direta entre estabilidade e distribuição homogênea de átomos de Pt e Co formando a nanoliga com estrutura ICO. No entanto, sob uma atmosfera saturada de ligantes de CO adsorvidos, a estabilidade da nanoliga diminui (aumenta) para composições com grandes quantidades de Pt (Co). As análises mostraram que sob os efeitos da adsorção as composições permanecem com configuração ICO, exceto para Pt42Co13 (estrutura core@shell do tipo Co@Pt em fase gasosa), onde as moléculas de CO deslocam os átomos de Co para a superfície, e, então, induzindo um processo de amorfização na formação de uma estrutura formada com átomos de Pt ocupando o core. Para investigar os efeitos de temperatura na estabilidade e meta-estabilidade de nanoclusters e clusters de Au utilizando dinâmica molecular de Born-Oppenheimer, foram utilizados nanoclusters de tamanho médio de Au25, Au38 e Au40 em fase gasosa e clusters de Au13 sob diferentes atmosferas saturadas de CO. (iii) Observou-se que em temperaturas de 300, 400, 500 e 600 K os nanoclusters exibem estruturas dinâmicas para as regiões de core-superfície, com core tetraédrico (4 átomos) ou T-bipiramidal (5 átomos) catiônicos fracamente ligados à superfície aniônica flexível. Uma abordagem estatística através de um algoritmo de redução de dimensionalidades para representação no espaço euclideano bidimensional, chamado de sketch-map, foi proposta como uma nova linguagem para analisar a superfície de energia livre (FES) dos sistemas calculada na aproximação de multistate Bennet acceptance-ratio. A FES foi utilizada como uma análise qualitativa das configurações estáveis e meta-estáveis sob os efeitos de temperaturas, indicando as regiões preferenciais do espaço configuracional de cada nanocluster investigado. (iv) Incluindo os efeitos de ligantes e temperaturas em clusters de Au13, foi observado que em altas temperaturas os clusters de Au13 em fase gasosa tendem a configurações mais abertas com menor comprimento de ligação com relação às estruturas tridimensionais. Por outro lado, a saturação do ambiente com ligantes de CO restringem a mobilidade dos átomos nos clusters de Au13, favorecendo a amostragem de estruturas tridimensionais mesmo em temperaturas relativamente altas. A análise de população de cargas mostrou uma alta concentração de elétrons nos átomos de O, de modo que o forte catiônico dos clusters de Au13 leva ao aumento da coordenação atômica, contribuindo para a estabilização das estruturas mais tridimensionais. / Transition metal nanoclusters (TM) with dimensions of ~1,0 nm have attracted great interest in various technological applications such as microelectronics, optics, magnetic devices and mainly as nanocatalysts. In this way, the morphology of these systems is a fundamental factor for optimization of performance in these applications, considering the direct relationship between the physicochemical properties and the atomic structure of the nanocluster determined by the ambient conditions (temperature and adsorbed molecules). In this sense, in view of the limitations on the precision of the experimental characterization techniques currently available, especially in nanometric dimensions, the use of computational calculations using first principles methods (ab initio) and based on the density functional theory is indispensable. Thus, in this work, the effects of binders and temperatures on the structural, electronic properties, stability and metastability of TM nanoclusters were investigated. (i) In this way, the (PH3)n and (SH2)n ligands effects with gradual saturation at n = 1, 6, 12 and 18 adsorbed onto nanoclusters Pt55 and Au55 with icosahedral (ICO), cuboctahedron (CUB), and distorted reduced core (DRC) structures were studied at 0K. In the gas phase, the DRC structures with 7 and 9 atoms in the core region are 5,34 eV (Pt55) and 2,20 eV (Au55) more stable than ICO model with symmetry Ih with 13 atoms in core. The results showed that there is a strong compression of the cationic core by the anionic surface induced by interactions of Coulomb (core+-surface-), leading to collapse and stress reduction of the symmetrical structures from the reduction of the number of atoms in the core region. However, the stability of the ICO structure increases with increasing Number of molecules adsorbed, so that DRC and ICO become approximately degenerated in energy in < 0,5 eV. In addition, ligands on the anionic surface reduces the transfer of charges between core+- surface-, contributing to the reduction of interactions of Coulomb and, consequently, alleviating the internal stress of the ICO. Similar result were obtained using triphenylphosphine (PPh3) as large ligands, in which the long carbon chains add side interactions between the ligands. (ii) PtnCo(55 - n) binares nanoclusters at 0K showed a high stability across the range of compositions, indicating a direct correlation between stability and homogeneous distribution of Pt and Co atoms forming the nanoalloys with ICO structure. However, under a saturated atmosphere of adsorbed CO ligands, the stability of the nanoaaloys decreases (increases) to compositions with large amounts of Pt (Co). Analyzes have shown that under the effects of adsorption the compositions remain with ICO configuration, except for Pt42Co13 (Co@Pt as core@shell in gas-phase), where Co molecules displace the Co atoms to the surface, and then inducing an amorphization process for a structure formed with Pt atoms occupying the core. To investigate the temperature effects on the stability and metastability of Au nanoclusters and clusters by using Born-Oppenheimer molecular dynamics, medium size nanoclusters of Au25, Au38, and Au40 were used in gas-phase and clusters of Au13 under different saturated atmospheres of CO. (iii) It has been observed that at temperatures of 300, 400, 500, and 600 K, the nanoclusters exhibit dynamic structures for the core-surface regions with cationic tetrahedral (4 atoms) or T-bipyramidal (5 atoms) cores weakly bound to the flexible anionic surface. A statistical approach using a dimensionality reduction algorithm for two-dimensional Euclidean space representation, called sketch-map, was proposed as a new language to analyze the free energy surface (FES) of the systems calculated on the approximation of multistate Bennet acceptance-ratio. The FES was used as a qualitative analysis of the stable and metastable configurations under the effect of temperature, indicating the preferred regions of the configurational space of each nanocluster investigated. (iv) By including the effects of ligands and temperatures on Au13 clusters, it was observed that at high temperatures the Au13 clusters in gas-phase tend to have more open configurations with less bond length relative to three-dimensional structures. On the other hand, the saturation of the environment with CO ligands restricts the mobility of the atoms in Au13 clusters, favoring the sampling of three-dimensional structures even at temperatures relatively high. The charge population analysis showed a high concentration of electrons in the O atoms, so that the strong cationic character of the Au13 clusters leads to increased atomic coordination, contributing to the stabilization of the more three-dimensional.
|
1023 |
Desenvolvimento de sulfóxido complexos de Ru(II) para aplicação em polimerização via metátese de olefinas cíclicas por abertura do anel / Development of Ru(II) complex sulphoxide for polymerization application via ring-opening cyclic olefin metathesisMartins, Daniele Maria 22 February 2018 (has links)
Este trabalho apresenta as sínteses do complexo fac-[RuCl2(Sdmso3(O-dmso)] (1) e de dois novos complexos, trans,cis,cis- [RuCl2(S-dmso)2(NH2Ph)2] (2) e fac-[RuCl2(Sdmso)3(NH2Ph)] (3). Estes compostos foram caracterizados por espectroscopia de absorção na região do infravermelho, espectroscopia de absorção na região do ultravioleta e visível, análise elementar (CHN), RMN (1H e 13C{1H}) e por difração de raios X em monocristal, confirmando a formação de complexos hexacoordenados. As atividades catalíticas destes complexos como pré-catalisadores nas reações de polimerização via metátese por abertura de anel (ROMP) de norborneno (NBE), norbornadieno (NBD), diciclopentadieno (DCPD) e seus copolímeros foram investigadas. As polimerizações foram realizadas na presença de etil diazoacetato (EDA) em diferentes razões molares de [monômero]/[Ru], tempos e temperaturas de reação. Estudos em função da variação da razão molar [monômero]/[Ru] mostraram que, em geral, a melhor condição para reação via ROMP é a de 5000 equivalentes na presença de [EDA]/[Ru] = 28. Valores de massas moleculares com ordem de magnitude de 105 g.mol-1 para todos os poliNBE e poli(NBE-co-DCPD) foram medidos por cromatografia por permeação em gel (GPC). Os demais polímeros foram insolúveis em CHCl3. Em polimerizações com NBE a 25 °C por 50 min, obtiveram-se rendimentos de 91, 83 e 99 % usando os complexos 1, 2 e 3, respectivamente. Nas polimerizações de NBD, o complexo 1 rendeu 8 % de poliNBD a 50 °C em 30 min. Nestas mesmas condições, os complexos 2 e 3 renderam 42 e 34 % de poliNBD, respectivamente. Na ROMP de DCPD a 50 °C em 30 min, os três complexos sintetizaram poliDCPD com rendimentos em torno de 16 %. A 50 °C por 30 min, poli(NBE-co-NBD) com maior concentração de NBD (80NBD: 20NBE) usando os complexos 2 ou 3 foram obtidos com 35 % de rendimento, enquanto com o complexo 1 os rendimentos são de 15 %. Copolímeros do tipo poli(NBE-co-DCPD) foram obtidos com maiores rendimentos com o complexo 3 e com maiores valores de Mw usando o complexo 2. A influência do tipo de complexo e dos efeitos cooperativos dos ligantes foi avaliada neste tipo de reação com implicações nas características dos polímeros. / This work presents the syntheses of the complex fac-[RuCl2(Sdmso)3(O-dmso)] (1) and of the two new complexes trans,cis,cis- [RuCl2(S-dmso)2(NH2Ph)2] (2) and fac-[RuCl2(Sdmso)3(NH2Ph)] (3). These compounds were characterized by infrared absorption spectroscopy, ultraviolet-visible absorption spectroscopy, elemental analysis (CHN), NMR (1H and 13C{1H}) and by X-ray diffraction in single crystals, confirming the formation of hexacoordinate complexes. The catalytic activities of these complexes as pre-catalysts in ring-opening metathesis polymerization (ROMP) reactions of norbornene (NBE), norbornadiene (NBD), dicyclopentadiene (DCPD) and its copolymers were investigated. The polymerizations were carried out in presence of ethyl diazoacetate (EDA), in different molar ratios of [monomer]/[Ru], as a function of reaction time and temperature. Studies on the variation of the [monomer]/[Ru] molar ratio have shown that, in general, the best condition for the ROMP reaction is 5000 equivalents, in the presence of [EDA]/[Ru] = 28.Values of molecular weights with order of magnitude of 105 g.mol-1 for all polyNBE and poly(NBE-co-DCPD) were measured by gel permeation chromatography (GPC). The other polymers were insoluble in CHCl3. In polymerizations with NBE at 25 °C for 50 min, yields of 91, 83 and 99 % were obtained using complexes 1, 2 and 3, respectively. In the NBD polymerizations, complex 1 yielded 8 % of polyNBD at 50 °C for 30 min. Under these same conditions, complexes 2 and 3 yielded 42 and 34 % of polyNBD, respectively. In the ROMP of DCPD at 50 °C for 30 min, the three complexes synthesized polyDCPD in yields of about 16 %. At 50 °C for 30 min, poly(NBE-co-NBD) with higher concentration of NBD (80NBD : 20NBE) using complexes 2 or 3 were obtained in 35% yield, while with complex 1 the yields were 15 %. Poly(NBE-co-DCPD) copolymers were obtained in higher yields with complex 3 and higher Mw values using complex 2. The influence of the type of complex and the cooperative effects of the ligands were evaluated in this type of reaction with implications in the characteristics of the polymers.
|
1024 |
Síntese de 4-cloro-1-hidroxinaftaleno-2-oxazolinas a partir do ácido 1-hidroxi-2-naftóico: ciclização e halogenação one-pot empregando cloreto de tionila / Synthesis of 4-chloro-1-hydroxynaphthalene-2- oxazolines from 1-hydroxy-2-naphthoic acid: one-pot cyclization and one halogenation using thionyl chloride.Barbeiro, Cristiane de Souza 27 January 2017 (has links)
No presente trabalho, foi desenvolvida uma metodologia one-pot para obtenção de produtos 4-cloro-1-hidroxinaftaleno-2-oxazolinas (Cl-HNO) 4, utilizando um excesso de SOCl2 a partir da amida 3a. Para a formação do produto de interesse 4 foi desenvolvida uma proposta mecanística para a simultânea ciclização do anel 2- oxazolina e halogenção na porção do anel naftóico através de espectrometria de massas de alta resolução, difração de raios-x e cálculos teóricos. Em seguida, a hidrólise de 4 levou ao produto 5 com nova inversão de configuração no C4. Para funcionalização do ácido 5, foram reagidos grupos aminas e álcoois, conduzindo a uma pequena biblioteca de compostos inéditos com propriedades fluorescentes (6a-e, 7a-e) com Φf 0.8%-1.6%. Testes biológicos contra cepas de fungos foram realizadas. Em uma segunda etapa do trabalho, foi realizada a aplicação do anel 2-oxazolínico como ligantes em reações de acoplamento cruzado do tipo Suzuki-Miyaura. A síntese dos ligantes foi realizada em apenas dois passos reacionais, partindo das amidas 3a-c reagidas com Deoxo-Flúor® levando a três diferentes ligantes 8a-c. Os mesmos foram testados, e o ligante 8a levou aos produtos de acoplamento 9a-m com os melhores rendimentos de 59% a 95%. / In this work, we developed a new one-pot method for synthesizing 4-chlorinated 1- hydroxynaphthaleno-2-oxazoline (2-HNO) 4 by subjecting amide 3a to excess SOCl2. A mechanism for the formation of 4 is proposed, which involves simultaneous cyclization to form the 2-oxazoline ring and halogenation of the 2-hyrdoxynaphthalene ring. We present supporting evidence for this mechanism in the form of high resolution mass spectrometry, x-ray crystallography and theoretical calculations. Hydrolysis of 4 led to product 5 with inversion of configuration at C-4, confirmed by NMR spectra. To functionalize the acid 5, amines and alcohols were reacted with acid 5, leading to a small library of novel compounds having fluorescent properties (6a-e, 7a-e) with Φf 0.8%-1.6%. Furthermore, the library of compounds were used in biological testing against various strains of fungi. In the second stage of this work, we explored the application of the 2-oxazoline ring, through its use as a ligand in Suzuki-Miyaura cross-coupling reactions. The preparation of the ligands were obtained in only two reaction steps, starting from amides 3a-c were reacted with Deoxo-Fluor®, leading to three different ligands 8a-c, respectively. The same were tested, and the ligand 8a provided coupling products 9a-m in good yields of 59% to 95%.
|
1025 |
Interações dos receptores nucleares com seus ligantes: Estudos estruturais do receptor de hormônio tireoidiano, do receptor de mineralocorticóide e do receptor ativado por proliferadores peroxissomais / Interaction of the nuclear receptors with its ligands: Structural studies of the thyroid hormone receptor, mineralocorticoid receptor and peroxisome proliferator-activated receptorNascimento, Alessandro Silva 06 March 2009 (has links)
Os receptores nucleares constituem uma superfamília de fatores de transcrição regulados pela interação com hormônios. Esta superfamília inclui, por exemplo, os receptores de hormônio tireoidiano, estrogênio, androgênio, glicocorticóide e mineralocorticóide. Neste trabalho, empregamos técnicas de biologia estrutura e bioinformática para estudar as interações entre alguns dos membros da família de receptores nucleares e seus respectivos ligantes. Para o receptor de hormônio tireoidiano, foi demonstrado, através da análise das estruturas cristalográficas das duas isoformas do receptor ligados aos tiromimético Triac, que os componentes entálpicos visíveis nas estruturas não explicam a seletividade do ligante. Dados de dinâmica molecular confirmaram que a seletividade do hormônio tem um importante componente entrópico. Empregando a técnica de dinâmica molecular, estudamos a ligação do receptor de mineralocorticóide humano à aldosterona, ao cortisol, à espironolactona e à cortisona e simulamos ainda o efeito da mutação S810L, conhecida por converter a atividade antagonista da cortisona e da espironolactona em agonista. A análise das simulações revelou um perfil de ligações de hidrogênio similar na ligação do receptor selvagem ao cortisol e à aldosterona. A cortisona perde, por conta da inserção de uma hidroxila na posição 11, uma ligação de hidrogênio importante com a Asn770 e, por isso, tem menor energia potencial de ligação. A espironolactona perde a mesma ligação de hidrogênio ao mesmo tempo em que aumenta o número de contatos de van der Waals pela inserção do grupo tioacetil na posição 7. A mutação S810L simulada no complexo com cortisona, cortisol e espironolactona não interfere no padrão de ligações de hidrogênio estabelecidas entre o receptor e os ligantes, mas altera a mobilidade de uma das regiões propostas como rota de dissociação. Propomos, portanto, que a mutação interfere na cinética de dissociação dos ligantes e não no padrão de interações estabelecidas no equilíbrio. Simulações de dissociação induzida do ligante confirmam esta proposição. Na última etapa, utilizamos os modelos experimentalmente determinados para o receptor ativado por proliferadores peroxissomais gama para a busca de novos ligantes através da técnica de docking molecular. Neste trabalho, utilizamos uma base de dados com aproximadamente um milhão de compostos. Destes, quatro foram selecionados após o docking molecular e testados experimentalmente. Um dos compostos testados se mostrou ativo neste receptor, apresentando uma atividade de 60-70% da atividade da rosiglitazona, conhecido agonista total do PPARg. / Nuclear receptors are a superfamily of hormone-regulated transcriptional factors. This superfamily includes, for example, the receptor for thyroid hormone, estrogen, androgen, gluco and mineralocorticoid. In this work, we used structural biology and bioinformatic tools to study the interactions between some members of the nuclear receptor superfamily and its respective ligands. We showed by the analysis of the crystal structures of both thyroid hormone receptor isoforms bound to the thyromimetic Triac that the enthalpic components visible in the structures do not explain the ligand selectivity. Molecular dynamics simulation data confirmed later that the hormone selectivity has an important entropic component. Using the molecular dynamics simulation, we studied, in a second stage, the interaction between the human mineralocorticoid receptor bound to aldosterone, cortisol, spironolactone and cortisone and also simulated the effects of the mutations S810L, known to convert the antagonist properties of spironolactone and cortisone in an agonist activity. The analysis of the simulations showed a similar profile in hydrogen bonds established between the wild type receptor bound to cortisol and aldosterone. Cortisone looses an important hydrogen bond with Asn770 because of the insertion of a carbonyl group in the 11 position and shows a decreased binding potential energy. Spironolactone loses the same interaction but has an increased number of van der Waals contacts because of the insertion of a tioacetyl group in the 7 position. The mutant S810L simulated in complex with cortisol, cortisone and spironolactone showed that the mutation do not interfere with the hydrogen bond profile established between the receptor and the ligands but changes the mobility of a region in the receptor previously proposed as a ligand dissociation route. Ligand unbinding simulations through steered molecular dynamics (SMD) confirm that aldosterone and cortisol unbind differentially and the mutation S810L alters the unbinding profile. We then propose that the mutation changes the kinetics of ligand association/dissociation without changing the profile of the interactions established in the equilibrium. In the last stage, we used the experimentally determined structural model of the peroxissome proliferator-activated receptor gamma to search for novel ligands using the molecular docking technique. For this work, we used a database containing about 1 million compounds. Among those, four compounds were selected after the docking computation and experimentally tested. One of these compounds was found to be active in the receptor, showing about 60-70% of the agonistic activity of rosiglitzone, a known PPARg total agonist.
|
1026 |
Desenvolvimento de catalisadores de rutênio coordenados a toluilfosfinas para polimerização via metátese / Development of ruthenium catalysts coordinated with tolylphosphines for metathesis polymerizationFerreira, Marcella de Sousa 20 February 2014 (has links)
Este trabalho investigou a influência das propriedades estéricas e eletrônicas de ligantes ancilares em complexos do tipo [RuCl2(PR3)3] e [RuCl2(PR3)xLy], onde R = p-toluil e L = piperidina, N-butilamina e isonicotinamida, em reações de polimerização via metátese por abertura de anel (ROMP) e de copolimerização via metátese por abertura de anel (ROMCP) de norborneno (NBE) e norbornadieno (NBD). O objetivo foi observar como o efeito estéreo (dado em função do ângulo de cone, θ) e eletrônico (dado em função de pKa) da PpTol3 pode influenciar a reatividade em ROMP e ROMCP quando está sozinha ou combinada com amina. <br /> O complexo [RuCl2(PpTol3)3] (1) produziu rendimentos melhores que 70% por 10 min a 23 °C, com Mw na ordem de 104 g.mol-1 e IPD de 2,2. O melhor rendimento obtido quando o complexo [RuCl2(PpTol3)2(pip)] (2) é utilizado foi observado nas reações por 30 min a 50 °C (80,2%) com Mw de 1,5 x 105 g.mol-1. IPD de 2,0 foi obtido com 2 por 60 min a 23 °C. O complexo 2 demonstrou ser mais reativo que o complexo 1 nas reações de ROMP de NBD, com rendimento de 60,1% por 60 min a 50 °C. O impedimento estéreo de PpTol3 em 1, provavelmente é o responsável pelo melhor desempenho com NBE, com um período de indução mais curto para iniciar a ROMP. Por outro lado, o sinergismo amina→Ru→olefina deve contribuir para a ativação de NBD com 2. <br /> Os rendimentos para poliNBE com os complexos contendo N-butilamina e isonicotinamida foram de 68 e 35%, respectivamente, por 60 min a 50 °C, isso mostra que a atividade catalítica para estes complexos sobrepõe o baixo ângulo de cone da Nbutilamina e a capacidade de retrodoação da isonicotinamida. Os rendimentos para o poliNBD foram de 30,9 e 9,1, respectivamente. <br /> As reações de copolimerizações com NBE e NBD (ROMCP) foram realizadas com uma quantidade fixa de NBE ([NBE]/[Ru] = 5000) e diferentes concentrações de NBD ([NBD]/[Ru] = 1000, 2000 ou 3000), por 60 min a 50°C. Para ambos os complexos 1 e 2, os rendimentos foram acima de 80% quando aumentou-se a [NBD] e os materiais poliméricos apresentaram microestruturas lisas. Os valores de Tg (acima de 60 °C) obtidos quando o complexo 1 foi utilizado, sugerem a presença de NBD nas cadeias poliméricas. Com o complexo 2, os valores de Tg foram entre 33 e 37 °C, indicando a possibilidade de polimerização apenas do NBE. / This study investigated the influence of steric and electronic properties of ancillary ligands in complexes of the type [RuCl2(PR3)3] and [RuCl2(PR3)xLy], with R = p-tolyl and L = piperidine, N-butylamine and isonicotinamide, for ring-opening metathesis polymerization (ROMP) and ring-opening metathesis copolymerization of norbornene (NBE) and norbornadiene (NBD). The aim was to observe how the steric (in terms of the cone angle, θ) and electronic (in terms of pKa) effects of PpTol3 can tune the reactivity in ROMP and ROMCP when alone or combining with an amine. <br /> The [RuCl2(PpTol3)3] complex (1) produced yields better than 70% for 10 min at 23 °C, with Mw in the order of 104 g.mol-1 and PDI of 2,2. The best yields obtained when the complex [RuCl2(PpTol3)2(pip)] (2) was used was observed in the reactions 30 min at 50 °C (80%), with Mw of 1.5 x 105 g.mol-1. PDI of 2.0 was obtained with 2 for 60 min at 23 °C. The complex 2 proved to be more reactive than complex 1 for ROMP of NBD, with yield of 60.1% for 60 min at 50 °C. The steric hindrance of PpTol3 in 1 probable provided the difference in the reactive for NBE, with a short induction period to initiate the ROMP. However, the amine→Ru→olefin synergism in 2 probable contributed to the better activation of NBD. <br /> The yields for polyNBE with the N-butylamine and isonicotinamide derivative complexes were 68 and 35%, respectively, for 60 min at 50 °C., it shows that the catalytic activity of these complexes to overlap the low cone angle of the N-butylamine and the ability of the backdonation of the isonicotinamide. Proceeds to poliNBD were 30.9 and 9.1, respectively. <br /> Copolymerizations with NBE and NBD (ROMCP) were performed with a fixed quantity of NBE ([NBE]/[Ru] = 5000) and different concentrations of NBD ([NBD]/[Ru] = 1000, 2000 or 3000), for 60 min at 50 ° C. The yields were better than 80% when increasing the [NBD] and the polymeric materials showed smooth microstructures. The obtained Tg values (60 °C) obtained when the complex 1 was used, indicated the presence of NBD in the polymer chains. With the complex 2, the Tg values were in the range of 33 - 37 °C, indicating the possibility of polymerization of only NBE.
|
1027 |
Using sterically hindered anionic N-donor ligands for stabilization of low-valent metal complexesJanuary 2015 (has links)
The present research work focuses on the coordination chemistry of two different types of monoanionic nitrogen-coordinating ligands, namely the bidentate triazenide ligand [(DippN)N(NDipp)]⁻ (Dipp = Prⁱ₂C₆H₃−2,6) (L¹) and monodentate arylamido ligands [N(R)(Ar)]⁻ (R = SiMe₃., Ar = C₆H₃Me₂-2,6 (L²), C₆H₂Me₃-2,4,6 (L³) or C₆H₃Prⁱ₂-2,6 (L⁴); R = SiBuᵗMe₂, Ar = C₆H₃Prⁱ₂-2,6 (L⁵)). The first part of this work was centred on the synthesis, structural characterization and reactivity of divalent lanthanide metal complexes derived from the triazenide ligand L¹. The second part of this work dealt with the chemistry of low valent and low-coordinate first row transition metal complexes supported by arylamido ligands Lⁿ (n = 2-5). The last part of this work focused on the synthesis and structures of divalent chromium complexes derived from the L¹, L⁴ and L⁵ ligands. / Chapter 1 presents an overview on divalent lanthanide complexes derived from nitrogen-coordinating ligands. The coordination chemistry of low valent and low-coordinate first-row transition metal complexes was also reviewed. / Chapter 2 describes the preparation and characterization of samarium(II) triazenide complex [Sm(L¹)₂(THF)₂] (2). Complex 2 was prepared by the reaction of SmI₂(THF)₂ with 2 equivalents of potassium triazenide [KL¹(THF)₀.₅] (1). The electrochemistry of 2 in THF was studied with cyclic voltammetry. Complex 2 is a strong reducing reagent. Its reactions with various inorganic/organic substrates have been examined. Treatment of 2 with AgCl or PhCH₂Cl gave Sm(III) bis(triazenide) chloride complex [Sm(L¹)₂Cl(THF)₂] (3), whilst reaction of 2 with I₂ led to the isolation of the iodide complex [Sm(L¹)I₂(THF)₃] (4). Reactions of 2 with PhEEPh (E = S, Se) afforded the corresponding Sm(III) chalcogenolate complexes [Sm(L¹)₂(EPh)(THF)] (E = S (5), Se (6)). On the other hands, addition of 2 to ArEEAr (Ar = Buᵗ₂C₆H₃−2,6, E = S, Se and Te) yielded the homoleptic Sm(III) tris(triazenide) complex [Sm(L¹)₃] (7) as the only isolable product. Besides, reactions of 2 with O₂, S₈, Se, Ph₃P=Se and BuᵗOOBuᵗ also yielded complex 7. Complex 2 reacted with PhNHNH₂ and PhNHNHPh, leading to the isolation of the corresponding Sm(III) phenylhydrazido complexes [Sm(L¹)₂(DMAP)₂(NH₂NPh)] (8) and [Sm(L¹)(THF)(μ-η²:η²-PhNNPh)]₂ (9). Reactions of 2 with azobenzene, benzophenone, 9-fluorenone, adamantyl azide, N, N’-dicyclohexylcarbodiimide, N, N’-diisopropylcarbodiimide, and CS₂ were examined as well. / Chapter 3 reports on the coordination chemistry of the triazenide ligand L¹ with divalent ytterbium and europium ions. Metathetical reaction of LnI₂(THF)₂ (Ln = Yb, Eu) with two molar equivalents of [Na(L¹)(THF)₃] (10) led to the corresponding divalent lanthanide(II) bis(triazenide) complexes [Eu(L¹)₂(THF)₂] (11) and [Yb(L¹)₂(THF)₂] (12). The heteroleptic ytterbium(II) complex [Yb(L¹)(μ-I)(THF)₂]₂.(C₆H₁₄) (13.C₆H₁₄) was also isolated along with 12. Oxidation of 12 with CuCl afforded Yb(III) triazenide−chloride complex [Yb(L¹)₂Cl(THF)₂] (14). Treatment of 12 with PhEEPh (E = S, Se) afforded the corresponding Yb(III) chalcogenolate complexes [Yb(L¹)₂(EPh)(THF)] (E = S (15), Se (16)). Nevertheless, reactions of 12 with elemental sulfur and selenium yielded the homoleptic Yb(III) complex [Yb(L¹)₃] (17) as the only isolable product. / Chapter 4 deals with the synthesis and characterization of low valent and low-coordinate first row transition metal complexes derived from arylamido ligands L²-L⁵. Reaction of MCl₂ (M = Fe, Co) with one molar equivalent of lithium amide [Li(L³)(TMEDA)] (TMEDA = Me₂NCH₂CH₂NMe₂) yielded the corresponding monoamido complexes [M(L³)Cl(TMEDA)] (M = Fe (20) and Co (22)). Reduction of [Co(L²)Cl(TMEDA)] (21), 22 and [Co(L³)Cl(TMEDA)] (23) with potassium metal gave the corresponding cobalt(I) amido complexes [CoL²]₂ (24), [CoL₃]₂ (25) and [CoL⁴]₂ (26), respectively. Meanwhile, treatment of [Fe(L⁴)Cl(TMEDA)] (23) with potassium metal yielded iron(I)-dinitrogen complex [{FeL⁴(TMEDA)}₂(μ-η¹:η¹-N₂)] (27). Complexes 24-27 were fully characterized by X-ray crystallography, various spectroscopic techniques and cyclic voltammetry. DFT calculations were carried out in order to understand the electronic structures of these complexes. / Chapter 5 describes the preparation and characterization of three neutral two-coordinate first row transition metal complexes of the general formula [M(L⁵)₂] (M = Fe (29), Co (30), Ni (31)). They were prepared by the reactions of anhydrous MCl₂ (M = Fe, Co) or NiBr₂(DME) with [LiL⁵(Et₂O)₂] (28). The solid-state structures of complexes 29-31 were determined by X-ray diffraction analysis. They were also characterized by spectroscopic methods (UV/Vis, I.R.) and electrochemistry. TD-DFT computational analysis was carried out in order to assign UV/Vis spectra features of these two-coordinate late transition metal (Fe->Ni) complexes. / Chapter 6 reports on the coordination chemistry of L¹, L⁴ and L⁵ with chromium ions. Treatment of CrCl₂ or CrCl₃ with one molar equivalent of [Li(L¹)(Et₂O)₂] (32) yielded heteroleptic Cr(II) complex [Cr(L¹)(μ-Cl)(THF)]₂ (33) and Cr(III) complex [Cr(L¹)Cl₂(THF)₂] (34), respectively. Attempts to reduce 33 and 34 with potassium metal, potassium graphite or magnesium were unsuccessful, yielding [Cr(L¹)₂] (35). Reaction chemistry of 35 was also studied in our research work. No reaction was observed in the reaction of 35 with PhEEPh (E = S, Se). Treatment of 35 with iodine led to the isolation of iodide bridged heteroleptic Cr(II) complex [Cr(L¹)(μ-I)(THF)]₂ (36). Simple monodentate amido ligands L⁴ and L⁵ were also used to prepare Cr(I) complexes. Treatment of anhydrous CrCl₂ with [LiL⁴(Et₂O)₀.₅] and [LiL⁵(Et₂O)₂] (28) afforded oxidative deprotonation products [Cr{N(C₆H₃Prⁱ₂-2,6)(SiMe₂CH₂)}₂Cr(L⁴)] (37) and [Cr(L⁵){N(C₆H₃Prⁱ₂-2,6)(SiBuᵗMeCH₂)}] (38). Attempts to synthesize monovalent chromium complexes supported by the L¹, L⁴ and L⁵ ligands were still in progress during the submission of this thesis. / Chapter 7 summarizes the results of the present studies. A brief description on the future direction of this research work is also presented. / 本項研究工作主要針對兩類負一价含氮配体,即雙齒叠氮基配体[(DippN)N(NDipp)]⁻ (Dipp = Prⁱ₂C₆H₃−2,6) (L¹)和單齒苯胺基配体[N(R)(Ar)]⁻ (R = SiMe₃, Ar = C₆H₃Me₂-2,6 (L²), C₆H₂Me₃-2,4,6 (L³) or C₆H₃Prⁱ₂-2,6 (L⁴); R = SiBuᵗMe₂, Ar = C₆H₃Prⁱ₂-2,6 (L⁵))的配位化學進行研究。本研究工作的第一部分致力於研究二價鑭系叠氮基配合物的合成,結構及其化學反應性。第二部分研究工作主要集中于由苯胺基構築的低價態,低配位數的第一周期后過渡金属的配位化學研究。最後一部分工作闡述了二價鉻叠氮基配合物和苯胺基配合物的合成,結構和表徵。 / 第一章概述了二價鑭系含氮配合物的發展。同時,也簡要闡述低價態,低配位數過鍍金属含氮配合物的研究工作。 / 第二章描述了二價釤叠氮基配合物[Sm(L¹)₂(THF)₂] (2)的製備,結構及其化學反應性。配合物2是由SmI₂(THF)₂與兩當量的鉀叠氮基化合物[KL¹(THF)₀.₅] (1) 反應製得。配合物2的電化學性質採用了循環伏安法進行了研究。介於配合物2為強還原劑,它與一系列無機/有機化合物的反應也予以探索。配合物2與AgCl或PhCH₂Cl反應得到了三價釤雙叠氮基氯化物[Sm(L¹)₂Cl(THF)₂](3),同時配合物2與單質碘I₂反應得到了碘化物[Sm(L¹)I₂(THF)₃] (4)。配合物2與二苯基硫族化合物PhSSPh及PhSeSePh反應得到了相應的三價釤硫族配合物[Sm(L¹)₂(EPh)(THF)](E = S (5), Se (6))。與之相反,配合物2與位阻較大的二苯基硫族化合物ArEEAr (Ar = Buᵗ₂C₆H₃−2,6, E = S, Se和Te)反應得到了均配的三價釤三叠氮基配合物[Sm(L¹)₃] (7)。此外,配合物2與O₂, S₈, Se, Ph₃P=Se和BuᵗOOBuᵗ反應都生成了配合物7。配合物2與苯肼化合物PhNHNH₂和PhNHNHPh反應得到了相應的三價釤苯肼配合物[Sm(L¹)₂(DMAP)₂(NH₂NPh)] (8) (DMAP = 對二甲基胺吡啶)以及[Sm(L¹)(THF)(μ-η²:η²-PhNNPh)]₂(9)。另外,本章對配合物2與偶氮苯;二苯基酮;9-芴酮;金剛烷叠氮化物;二環已基碳二亞胺;二異丙基碳二亞胺以及二硫化碳的反應性也進行了研究。 / 第三章講述了對該叠氮基配体L¹所衍生出的二價鐿和銪配合物的配位化學研究工作。二價鑭系碘化物LnI₂(THF)₂(Ln = Yb, Eu)與兩當量的鈉叠氮基化合物[Na(L¹)(THF)₃] (10)的複分解反應得到相應的二價鑭系雙叠氮基配合物[Eu(L¹)₂(THF)₂] (11)以及[Yb(L¹)₂(THF)₂] (12)。在製備二價鐿雙叠氮基配合物[Yb(L¹)₂(THF)₂] (12)的過程中同時得到了異配的二價鐿碘橋連單叠氮基配合物[Yb(L¹)(μ-I)(THF)₂]₂.(C₆H₁₄) (13.C₆H₁₄)。配合物12與CuCl的氧化反應得到三價鐿叠氮基氯化物[Yb(L¹)₂Cl(THF)₂] (14)。此外,配合物12與二苯基硫族化合物PhSSPh及PhSeSePh反應得到了相應的三價鐿硫族配合物[Yb(L¹)₂(EPh)(THF)] (E = S (15), Se (16))。然而,配合物12與單質硫和單質硒的反應生成唯一的產物,即均配的三價鐿三叠氮基配合物[Yb(L¹)₃] (17)。 / 第四章闡述了由苯胺基配体L²-L⁵所衍生的低價態,低配位數第一周期后過渡金屬的製備以及結構表徵。通過金屬氯化物MCl₂(M = Fe, Co)和一當量的鋰苯胺基化合物反應得到相應的二價鐡和鈷的單苯胺基配合物[M(L³)Cl(TMEDA)] (M = Fe (20) 和 Co (22))。配合物[Co(L²)Cl(TMEDA)] (21), 22和[Co(L³)Cl(TMEDA)] (23) 與金屬鉀的還原反應分別得到相應的一價鈷苯胺基配合物[CoL²]₂ (24), [CoL³]₂ (25) 和 [CoL⁴]₂ (26)。與此同時,二價鐡單苯胺基配合物[Fe(L⁴)Cl(TMEDA)] (23)與金屬鉀反應得到了一價鐡-偶氮配合物[{FeL⁴(TMEDA)}₂(μ-η¹:η¹-N₂)] (27)。配合物24-27的分子結構及其物理性質分別以X射綫衍射晶体學,波譜學以及循環伏安法表徵。密度泛函(DFT)這一理論計算方法也被用來瞭解這些配合物的電子結構。 / 第五章描述了三個二配位的第一周期后過渡金屬配合物[M(L⁵)₂] (M = Fe (29), Co (30), Ni (31))的製備和表徵。它們由相應的無水金屬鹵化物MCl₂ (M = Fe, Co)或NiBr₂(DME)與[LiL⁵(Et₂O)₂] (28)反應製得。配合物29-31的固體結構由X射綫衍射分析獲得。它們的光學性質和電學性質也分別由波譜方法(紫外可見光光譜,紅外光譜)以及循環伏安法表徵得到。含時密度泛函(TD-DFT)這一計算分析方法也被用來瞭解這些化合物紫外可見光光譜性質。此外,配合物31在有機烯烴與苯硅烷PhSiH3的硅氫化反應中被證實為有效的催化劑。 / 第六章講述了由配体L¹, L⁴與L⁵所構築的二價鉻的配位化學的研究。通過無水二氯化鉻CrCl₂或三氯化鉻CrCl₃與一當量的鋰叠氮基配合物[Li(L¹)(Et₂O)₂] (32)反應分別成功製備了相應的異配的二價鉻配合物[Cr(L¹)(μ-Cl)(THF)]₂ (33) 以及三价鉻配合物[Cr(L¹)Cl₂(THF)₂] (34)。利用金屬鉀,鉀碳以及單質鎂來還原配合物33和34生成了二價鉻雙叠氮基配合物[Cr(L¹)₂] (35)。此外,配合物35的反應性能也在本項工作得以研究。然而,在配合物35與二苯基硫族化合物PhSSPh及PhSeSePh反應中並沒有觀察到明顯的反應變化,依舊得到了原料配合物35。配合物35與單質碘I₂反應得到了異配碘橋連二價鉻配合物[Cr(L¹)(μ-I)(THF)]₂ (36)。單齒苯胺基配体L⁴和L⁵也被嘗試用來合成一價鉻配合物。無水二氯化鉻CrCl2與鋰苯胺基化合物[LiL⁴(Et₂O)₀.₅]和[LiL⁵(Et₂O)₂] (28)反應分別生成了氧化脫質子產物[Cr{N(C₆H₃Prⁱ₂-2,6)(SiMe₂CH₂)}₂Cr(L⁴)] (37) and [Cr(L⁵){N(C₆H₃Prⁱ₂-2,6)(SiBuᵗMeCH₂)}] (38)。關於利用叠氮基配体L¹,以及苯胺基配体L⁴和L⁵來製備一價鉻配合物的相關工作在遞交本論文的過程中还在進行中。 / 第七章總結了本論文的研究成果,並對本項工作未來的發展作出了簡要的描述。 / Yun, Lei. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2015. / Includes bibliographical references. / Abstracts also in Chinese.80-30|aDetailed summary in vernacular field only. / Title from PDF title page (viewed on 21, December, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
|
1028 |
Base-promoted aryl carbon-halogen bond cleavages by Iridium (III) porphyrins. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Cheung, Chi Wai. / "December 2010." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
1029 |
Synthesis, structures and reactivities of sterically hindered N-functionalized transition metal alkyl complexes.January 1995 (has links)
by Lee Hung Kay. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references. / Table of Contents --- p.i / Acknowledgements --- p.vi / Abstracts --- p.vii / Abbreviations --- p.ix / Chapter CHAPTER I. --- GENERAL INTRODUCTION / Chapter I.1 --- A Brief Review on the Background of Organometallic Chemistry --- p.1 / Chapter I.2 --- Stability of Organotransition Metal Complexes --- p.2 / Chapter I.3 --- Decomposition Pathways of Transition Metal σ Hydrocarbyls --- p.5 / Chapter I.4 --- Preparation of Transition Metal σ-Alkyl Complexes --- p.10 / Chapter I.5 --- A Survey on the Use of Functionalized Alkyl and Aryl Ligands in Synthesis of Transition Metal σ-Hydrocarbyls --- p.15 / Chapter I.6 --- 2-(Trimethylsilyl)methylpyridine (3) and 2-Bis(trimethylsilyl)- methylpyridine (4) as Ligand Precursors --- p.20 / Chapter I.7 --- A Brief Review of Previous Results on Synthesis of Metal Alkyl Complexes Using (1) and (2) as Ligands --- p.23 / Chapter I.8 --- Objective of This Work --- p.28 / Chapter I.9 --- References for Chapter I --- p.29 / Chapter CHAPTER II. --- "SYNTHESIS, STRUCTURES AND REACTIVITY OF IRON(n) AND COBALT(II) DIALKYL COMPLEXES" / Chapter II. 1 --- Introduction / Chapter II. 1.1 --- Synthesis of Iron(II) and Cobalt(II) Alkyl Complexes --- p.34 / Chapter IL1.1.1 --- Iron(II) Alkyl Complexes --- p.34 / Chapter II.1.1.2 --- Cobalt(II) Alkyl Complexes --- p.41 / Chapter II.1.2 --- Reactions of Transition Metal Alkyl Complexes with Protic Reagents and Halogens --- p.45 / Chapter II. 1.3 --- The Chemistry of Transition Metal Alkoxides and Thiolates 一 A Brief Review --- p.48 / Chapter II.2 --- Results and Discussion / Chapter II.2.1 --- "Synthesis of Homoleptic Iron(II) and Cobalt(II) Dialkyl Complexes [M {C(SiMe3)2C5H4N-2} 2] (M=Fe 55,Co 56)" --- p.51 / Chapter II.2.2 --- Attempted Reaction of [FeCl2(PPh3)2] with [{R2Li}2] --- p.52 / Chapter II.2.3 --- Attempted Synthesis of Monoalkyliron(II) Complexes --- p.53 / Chapter II.2.4 --- "Synthesis of Homoleptic Iron(II) and Cobalt(II) Dialkyl Complexes [M{(CHSiMe3)C9H6N-8}2] (M = Fe57, Co 58)" --- p.54 / Chapter II.2.5 --- Molecular Structures of [M{C(SiMe3)2C5H4N-2}2] (M =Fe 55.Co 56) and [Co{(CHSiMe3)C9H6N-8}2] (58) --- p.56 / Chapter II.2.6 --- Spectroscopic and Magnetic Properties of Compounds 55-58 --- p.63 / Chapter II.2.7 --- Electrochemistry of [Co(R2)2] (56) and [Co(R3)2] (58) --- p.66 / Chapter II.2.8 --- "Reactivities of [M{C(SiMe3)2C5H4N-2}2] (M = Fe55, Co 56)" --- p.70 / Chapter II.3 --- Experimentals for Chapter II --- p.83 / Chapter II.4 --- References for Chapter II --- p.86 / Chapter CHAPTER III. --- SYNTHESIS AND STRUCTURES OF DIALKYL COMPLEXES OF NICKEL(II) AND PALLADIUM(II) / Chapter III. 1 --- Introduction / Chapter III. 1.1 --- Nickel(II) Alkyl Complexes 一 A General Survey --- p.91 / Chapter III.1.1.1 --- η5-Cyclopentadienylnickel Alkyl and Aryl Complexes --- p.91 / Chapter III.1.1.2 --- Nickel Dialkyls --- p.96 / Chapter III. 1.2 --- Palladium(II) Alkyl Complexes ´ؤ A General Survey --- p.99 / Chapter III.1.2.1 --- Palladium Dialkyls --- p.99 / Chapter III. 1.2.2 --- Cyclopalladated Compounds --- p.101 / Chapter III.2 --- Results and Discussion / Chapter III.2.1 --- Synthesis of Nickel(II) Alkyl Complexes --- p.104 / Chapter III.2.1.1 --- Reactions of [{R1Li(Et2O)}2] and [{R2Li}2] with Nickelocenes ´ؤ Synthesis of η5 - Cyclopentadienylnickelalkyl Complexes (78-80) --- p.104 / Chapter III.2.1.2 --- Synthesis of the Substituted Nickelocene [Ni{{466}5- C5H3(SiMe3)2}2] (81) --- p.106 / Chapter III.2.1.3 --- Spectroscopic Properties of Compounds 78-80 --- p.107 / Chapter III.2.1.4 --- Molecular Structures of [(η5- C5H5)Ni{C(SiMe3)2C5H4N-2}] (78) and [{(η5- C5H5)Ni{CH(SiMe3)C5H4N-2}}2] (80) --- p.110 / Chapter III.2.1.5 --- "Reactions of [{R2Li}2] with NiCl2 and [NiCl2L2] (L2 = TMEDA, 2PPh3) ´ؤ Synthesis of Nickel Dialkyl Complex [Ni{C(SiMe3)2C5H4N-2}2] (82)" --- p.115 / Chapter III.2.1.6 --- Molecular Structure of [Ni{C(SiMe2)2C5H4N- 2}2] (82) --- p.118 / Chapter III.2.1.7 --- Spectroscopic Properties of [Ni{C(SiMe3)2C5H4N-2}2] (82) --- p.121 / Chapter III.2.1.8 --- Electrochemistry of [Ni{C(SiMe3)2C5H4N-2}2] (82) --- p.122 / Chapter III2.1.9 --- Reactivities of Ni[C(SiMe3)2C5H4N-2]2 (82) --- p.124 / Chapter III.2.1.10 --- "Reactions of [{R2Li}2] with [NiCl2(diphos)] [diphos = 1,2-bis(diphenylphosphino)ethane]" --- p.125 / Chapter III.2.1.11 --- Molecular Structure of [Ni{C(SiMe3)2C5H4N- 2}{5-(2'-C5H4NC(SiMe3)2C5H4N-2- CH(SiMe3)2}Cl] (83) --- p.127 / Chapter III.2.1.12 --- "Reactions of [{R1Li(Et2O)}2] and [R5Li] [-R5 = -CH2C5H4N-2] with NiCl2 and [NiCl2L2] (L2 = TMEDA, 2PPh3)" --- p.130 / Chapter III.2.1.13 --- Molecular Structure of [{CH(SiMe3)C5H4N- 2}2] (86) --- p.136 / Chapter III.2.2 --- Synthesis of Palladium(II) Alkyl Complexes --- p.139 / Chapter III.2.2.1 --- "Reactions of [{R2Li}2] with [PdX2L2] (L = PPh3, Et2S; X=Cl, Br) ´ؤ Synthesis of [Pd(R2)2] (88) and [Pd(R2)(PPh3)X] [X 二 Cl 89, Br 90]" --- p.139 / Chapter III.2.2.2 --- "Molecular Structures of Compounds [P'd{C(SiMe3)2C 5H 4N-2}2] (8 8), [Pd{C(SiMe3)2C5H4N-2}(PPh3)Cl] (89),and [Pd{C(SiMe2)2C5H4N-2}(PPh3)Br] (90)" --- p.140 / Chapter III.2.2.3 --- Spectroscopic Properties of Compounds 88-90 --- p.146 / Chapter III.2 2.4 --- Electrochemistry of [Pd{C(SiMe3)2C5H4N-2}2] (88) --- p.147 / Chapter III.2.2.5 --- "Studies on Stereo specificity of the Reactions between [{R2Li}2] and [PdX2(PPh3)2] (X = Cl, Br)" --- p.150 / Chapter III.2.2.6 --- Attempted Synthesis of [Pd(R1)2] and [Pd(R1)(PPh3)Cll --- p.152 / Chapter III.2.2.7 --- Attempted Synthesis of [{Pd(R2)Cl}2]via Intramolecular C-H Activation --- p.153 / Chapter III.2.2.8 --- Molecular Structure of [{CH(SiMe3)2C5H4N- 2}2PdCl2} (91) --- p.154 / Chapter III.3 --- Experimentals for Chapter III --- p.157 / Chapter III.4 --- References for Chapter III --- p.165 / Chapter CHAPTER IV. --- SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF ZIRCONIUM(IV) AND HAFNIUM(IV) ALKYL COMPLEXES / Chapter IV. 1 --- Introduction --- p.169 / Chapter IV. 1.1 --- Homoleptic and Heteroleptic Complexes --- p.170 / Chapter IV. 1.2 --- Organo-Zirconium(IV) and -Hafnium(IV) Compounds Containing Functionalized Alkyl Ligands --- p.177 / Chapter IV.2 --- Results and Discussion / Chapter IV.2.1 --- "Synthesis of Zirconium(IV) and Hafnium(IV) Dialkyl Dichloride Compounds [M(R2)2C12] (M = Zr 103,Hf 104" --- p.181 / Chapter IV.2.2 --- Attempted Synthesis of Titanium(IV) Alkyl by the Reaction of TiCl4 with [{R2Li}2] --- p.182 / Chapter IV.2.3 --- Attempted Synthesis of Zirconium(IV) and Hafnium(IV) Alkyls with -R 1[= -CH(SiMe3)C5H4N-2] as Ligand --- p.182 / Chapter IV.2.4 --- Molecular Structure of [Zr{C(SiMe3)2C5H4N- 2}2C12] (103) --- p.183 / Chapter IV.2.5 --- Spectroscopic Properties of {C(SiMe3)2C5H4N- 2}2C12] (M = Zr 103,Hf 104) --- p.187 / Chapter IV.3 --- Experimentals for Chapter IV --- p.188 / Chapter IV.4 --- References for Chapter IV --- p.190 / Chapter CHAPTER V. --- COMPARISON OF BONDING PARAMETERS AMONG METAL ALKYL COMPLEXES WHICH CONTAIN ALKYL LIGANDS -R2 --- p.193 / References for Chapter V --- p.201 / APPENDIX I / Chapter A. --- General Procedures --- p.202 / Chapter B. --- Physical and Analytical Measurements --- p.202 / APPENDIX II / Magnetic Moment Measurements --- p.205 / APPENDIX III / "Table A-l. Selected Crystallographic Data for Compounds 55, 56, 58,and63" --- p.207 / "Table A-2. Selected Crystallographic Data for Compounds 78, 80,82 and83" --- p.208 / "Table A-3. Selected Crystallographic Data for Compounds 86, 88, 89 and90" --- p.209 / Table A-4. Selected Crystallographic Data for Compounds 91 and 103.… --- p.210
|
1030 |
Application of affinity mass sensor based on boronic acid derivatives.January 2001 (has links)
Chow Ka-man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 52-55). / Abstracts in English and Chinese. / Chapter 1 --- Introduction / Chapter 1.1 --- Chemical sensors --- p.1 / Chapter 1.2 --- Quartz crystal microbalance --- p.4 / Chapter 1.3 --- Concept of affinity mass sensor --- p.8 / Chapter 1.4 --- Film immobilization technologies --- p.9 / Chapter 1.5 --- Research outlines --- p.13 / Chapter 2 --- Experimental / Chapter 2.1 --- Sensor fabrication --- p.14 / Chapter 2.2 --- Flow-through cell --- p.16 / Chapter 2.3 --- Analysis procedures --- p.19 / Chapter 2.4 --- Response curve --- p.19 / Chapter 2.5 --- Experimental setup --- p.21 / Chapter 3 --- Detection of ascorbic acid by affinity mass sensor based on 3-aminophenylboronic acid / Chapter 3.1 --- Conventional analytical methods --- p.23 / Chapter 3.2 --- Research method - affinity mass sensor based on APBA --- p.24 / Chapter 3.3 --- To locate the binding site in ascorbic acid --- p.25 / Chapter 3.3.1 --- Steric energy calculated by molecular modeling --- p.26 / Chapter 3.4 --- Optimization of experimental variables --- p.29 / Chapter 3.4.1 --- Effect of pH --- p.29 / Chapter 3.4.2 --- Effect of sample volume --- p.30 / Chapter 3.4.3 --- Effect of flow velocity --- p.30 / Chapter 3.5 --- Calibration and Reproducibility --- p.32 / Chapter 3.6 --- Kinetic analysis --- p.33 / Chapter 3.7 --- Stability of sensor --- p.37 / Chapter 3.8 --- Interference studies --- p.37 / Chapter 3.9 --- Determination of ascorbic acid in real samples --- p.39 / Chapter 3.9.1 --- Results and Discussion --- p.39 / Chapter 3.10 --- Comparison with conventional ascorbic acid sensors --- p.42 / Chapter 3.11 --- Summary --- p.42 / Chapter 4 --- Boronic acid derivatives for the detection of sugars / Chapter 4.1 --- Scope of this work --- p.43 / Chapter 4.2 --- Results and Discussion --- p.44 / Chapter 4.3 --- Summary --- p.49 / Conclusion --- p.50 / References --- p.52 / List for tables --- p.56 / List for figures --- p.57 / Appendix I --- p.59 / Appendix II --- p.61
|
Page generated in 0.0425 seconds