Spelling suggestions: "subject:"links invariant"" "subject:"sinks invariant""
1 |
Representações do grupo de tranças por automorfismos de grupos / Representaciones ddelç grupo de trenzas por automorfismos de grupoPizarro, Pavel Jesus Henriquez 16 January 2012 (has links)
A partir de um grupo H e um elemento h em H, nós definimos uma representação : \'B IND. n\' Aut(\'H POT. n\' ), onde \'B IND. n\' denota o grupo de trança de n cordas, e \'H POT. n\' denota o produto livre de n cópias de H. Chamamos a a representação de tipo Artin associada ao par (H, h). Nós também estudamos varios aspectos de tal representação. Primeiramente, associamos a cada trança um grupo \' IND. (H,h)\' () e provamos que o operador \' IND. (H,h)\' determina um grupo invariante de enlaçamentos orientados. Então damos uma construção topológica da representação de tipo Artin e do invariante de enlaçamentos \' IND.(H,h)\' , e provamos que a representação é fiel se, e somente se, h é não trivial / From a group H and a element h H, we define a representation : \' B IND. n\' Aut(\'H POT. n\'), where \'B IND. n\' denotes the braid group on n strands, and \'H POT. n\' denotes the free product of n copies of H. We call the Artin type representation associated to the pair (H, h). Here we study various aspects of such representations. Firstly, we associate to each braid a group \' IND. (H,h)\' () and prove that the operator \' IND. (H,h)\' determines a group invariant of oriented links. We then give a topological construction of the Artin type representations and of the link invariant \' iND. (H,h)\' , and we prove that the Artin type representations are faithful if and only if h is nontrivial
|
2 |
Representações do grupo de tranças por automorfismos de grupos / Representaciones ddelç grupo de trenzas por automorfismos de grupoPavel Jesus Henriquez Pizarro 16 January 2012 (has links)
A partir de um grupo H e um elemento h em H, nós definimos uma representação : \'B IND. n\' Aut(\'H POT. n\' ), onde \'B IND. n\' denota o grupo de trança de n cordas, e \'H POT. n\' denota o produto livre de n cópias de H. Chamamos a a representação de tipo Artin associada ao par (H, h). Nós também estudamos varios aspectos de tal representação. Primeiramente, associamos a cada trança um grupo \' IND. (H,h)\' () e provamos que o operador \' IND. (H,h)\' determina um grupo invariante de enlaçamentos orientados. Então damos uma construção topológica da representação de tipo Artin e do invariante de enlaçamentos \' IND.(H,h)\' , e provamos que a representação é fiel se, e somente se, h é não trivial / From a group H and a element h H, we define a representation : \' B IND. n\' Aut(\'H POT. n\'), where \'B IND. n\' denotes the braid group on n strands, and \'H POT. n\' denotes the free product of n copies of H. We call the Artin type representation associated to the pair (H, h). Here we study various aspects of such representations. Firstly, we associate to each braid a group \' IND. (H,h)\' () and prove that the operator \' IND. (H,h)\' determines a group invariant of oriented links. We then give a topological construction of the Artin type representations and of the link invariant \' iND. (H,h)\' , and we prove that the Artin type representations are faithful if and only if h is nontrivial
|
Page generated in 0.0803 seconds