Spelling suggestions: "subject:"1ithium ion batteries"" "subject:"1ithium ion catteries""
41 |
Investigation of Lithium Ion Battery Electrodes: Using Mathematical Models Augmented with Data Science to Understand Surface Layer Formation, Mass Transport, Electrochemical Kinetics, and Chemical Phase ChangeBrady, Nicholas William January 2019 (has links)
This thesis first uses physical scale models to investigate solid-state phenomena - surface layer formation, solid-state diffusion of lithium, electrochemical reactions at the solid-electrolyte interface, as well as homogeneous chemical phase change reactions. Evidence is provided that surface layer formation on the magnetite, Fe3O4, electrode can accurately be described mathematically as a nucleation and growth process. To emulate the electrochemical results of the LiV3O8 electrode, a novel method is developed to capture the phase change process; this method describes phase change as a nucleation and growth process. The physical parameters of the LiV3O8 electrode: the solid-state diffusion coefficient, phase change saturation concentration, phase reaction rate constant, and exchange current density, are all quantified and the agreement with experimental results is compelling. Electrochemical evidence, corroborated by results from density functional theory, indicate that delithiation is a more facile process than lithiation in the LiV3O8 electrode.
Further investigation of the LiV3O8 electrode is undertaken by coupling the crystal scale model to electrode scale phenomena. Characterization of the LiV3O8 electrode by operando EDXRD experiments provides a unique and independent set of observations that validate the previously estimated physical constants for the phase change saturation concentration and phase change reaction rate constant; they are both found to be consistent with their previous estimates. Finally, it is observed that anodic physical phenomena are important during delithiation of the cathode because the kinetics at the anode become mass-transfer limited.
Finally, it is illustrated that coupling physical models to data science and algorithmic computing is an effective method to accelerate model development and quantitatively guide the design of experiments.
|
42 |
Application and Challenges of Neutron Depth Profiling to In-Situ Battery MeasurementsLyons, Daniel J. 29 September 2021 (has links)
No description available.
|
43 |
UNDERSTANDING THE STRUCTURE-PROPERTY-PERFORMANCE RELATIONSHIP OF SILICON NEGATIVE ELECTRODESHu, Jiazhi 01 January 2019 (has links)
Rechargeable lithium ion batteries (LIBs) have long been used to power not only portable devices, e.g., mobile phones and laptops, but also large scale systems, e.g., electrical grid and electric vehicles. To meet the ever increasing demand for renewable energy storage, tremendous efforts have been devoted to improving the energy/power density of LIBs. Known for its high theoretical capacity (4200 mAh/g), silicon has been considered as one of the most promising negative electrode materials for high-energy-density LIBs. However, diffusion-induced stresses can cause fracture and, consequently, rapid degradation in the electrochemical performance of Si-based negative electrodes. To mitigate the detrimental effects of the large volume change, several strategies have been proposed. This dissertation focuses on two promising approaches to make high performance and durable Si electrodes for high capacity LIBs.
First, the effect of polymeric binders on the performance of Si-based electrodes is investigated. By studying two types of polymeric binders, polyvinylidene fluoride (PVDF) and sodium alginate (SA) using peel tests, SEM, XPS, and FTIR, I show that the high cohesive strength at the binder-silicon interface is responsible for the superior cell performance of the Si electrodes with SA as a binder. Hydrogen bonds formed between SA and Si is the main reason for the high cohesive strength since neither PVDF nor SA bonds covalently with Si.
Second, the fabrication of high performance Si/polyacrylonitrile (PAN) composite electrode via oxidative pyrolysis is investigated. We show that high performance Si/polyacrylonitrile (PAN) composite negative electrodes can be fabricated by a robust heat treatment in air at a temperature between 250 and 400oC. Using Raman, SEM, XPS, TEM, TGA, and nanoindention, we established that oxidation, dehydration, aromatization, and intermolecular crosslinking take place in PAN during the heat treatment, resulting in a stable cyclized structure which functions as both a binder and a conductive agent in the Si/PAN composite electrodes. With a Si mass loading of 1 mg/cm2, a discharge capacity of ~1600 mAh/g at the 100th cycle is observed in the 400oC treated Si/PAN composite electrode when cycled at a rate of C/3.
These studies on the structure-property-performance relations of Si based negative electrode may benefit the LIB community by providing (1) a guide for the design and optimization of binder materials for Si electrodes and (2) a facile method of synthesizing Si-based composite negative electrodes that can potentially be applied to other Si/polymer systems for further increasing the power/energy density and lower the cost of LIBs for electric vehicle applications and beyond.
|
44 |
Design and Fabrication of High Capacity Lithium-Ion Batteries using Electro-Spun Graphene Modified Vanadium Pentoxide CathodesAhmadian, Amirhossein 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Electrospinning has gained immense interests in recent years due to its potential application in various fields, including energy storage application. The V2O5/GO as a layered crystal structure has been demonstrated to fabricate nanofibers with diameters within a range of ~300nm through electrospinning technique. The porous, hollow, and interconnected nanostructures were produced by electrospinning formed by polymers such as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA), separately, as solvent polymers with electrospinning technique.
In this study, we investigated the synthesis of a graphene-modified nanostructured V2O5 through modified sol-gel method and electrospinning of V2O5/GO hybrid. Electrochemical characterization was performed by utilizing Arbin Battery cycler, Field Emission Scanning Electron Microscopy (FESEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TGA), Mercury Porosimetry, and BET surface area measurement.
As compared to the other conventional fabrication methods, our optimized sol-gel method, followed by the electrospinning of the cathode material achieved a high initial capacity of 342 mAh/g at a high current density of 0.5C (171 mA/g) and the capacity retention of 80% after 20 cycles. Also, the prepared sol-gel method outperforms the pure V2O5 cathode material, by obtaining the capacity almost two times higher.
The results of this study showed that post-synthesis treatment of cathode material plays a prominent role in electrochemical performance of the nanostructured vanadium oxides. By controlling the annealing and drying steps, and time, a small amount of pyrolysis carbon can be retained, which improves the conductivity of the V2O5 nanorods. Also, controlled post-synthesis helped us to prevent aggregation of electro-spun twisted nanostructured fibers which deteriorates the lithium diffusion process during charge/discharge of batteries.
|
45 |
Design Principles for the Cathode/Electrolyte Interfacial Phenomena in Lithium Ion Batteries / リチウムイオン二次電池正極/電解質界面構造の解明と設計Yamamoto, Kentarou 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第19072号 / 人博第725号 / 新制||人||174(附属図書館) / 26||人博||725(吉田南総合図書館) / 32023 / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 加藤 立久, 教授 吉田 寿雄 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
|
46 |
Atomistic simulation studies of lithiated MnO2 nanostructuresKgatwane, Kenneth Mompati January 2020 (has links)
Thesis (Ph.D.(Physics)) -- University of Limpopo, 2020 / We employ molecular dynamics simulations, using DL_POLY code, to study the structural behaviour of β-MnO2 cathode material during discharging through lithium-ion intercalation into the bulk, nanoparticle, nanorod, nanosheet, and nanoporous β-MnO2. It is shown that lithium-ions have an average coordination number of about 5.70 and prefer surface sites with high oxygen coordination. The average lattice parameter values at intercalation of 0.85 Li/Mn are found to be under 4% relative to the experimental values obtained at 0.92 Li/Mn. Moreover, all the lithiated β-MnO2 structures did not collapse at 0.85 Li/Mn as observed in the β-MnO2 mesoporous in experimental work. As lithium is limited, sodium is a good alternative charge carrier in lithium-ion batteries. As a result, we have also performed studies on sodium intercalation into bulk, nanoparticle, nanorod, nanosheet and nanoporous β-MnO2. The microstructures and radial distribution functions show that the β-MnO2 structures could be intercalated up to 0.24 Na/Mn without any obvious structural degradation. Beyond this sodium concentration, the microstructure collapses and become amorphous thus predicting a potentially lower capacity for Na-MnO2-β batteries. Also, as the voltage is an important factor in the energy density of lithium-ion batteries, we have studied the trends in the average intercalation potentials in relation to the various nano architectures. The trend, in increasing value of average intercalation potentials, were found to be bulk structure, nanorod, nanosheet, nanoporous and nanoparticle. This suggests that nanostructuring can enhance cell voltage.
Mechanical properties studies on the pure and lithiated bulk and nanorod β-MnO2 were also performed through uniaxial compressive and tensile strain application. The results show that under compressive strain the bulk structure and nanorod mitigate stress through the contraction and collapse of the inherent tunnel structures, known to cause electrochemical inactivity, and also through the shifting of the MnO6 octahedral planes. The collapsing of tunnels was found to occur more on the bulk structure and less on the nanorod, while the MnO6 octahedral plane shifts were found to occur more on the nanorod and less on the bulk structure. Unoccupied 1x2 or conjoined 1x2 were found to result in structural collapse irrespective of the host nanoarchitecture. The X-ray diffraction pattern
(v)
plots suggest that lithium intercalation and compressive stress application have a similar impact on the underlying structure of the various nanostructures. The microstructure analysis for bulk β-MnO2 under tensile strain reveals that fracture occurred in the brookite region and along the dislocation/stacking fault. The nanorod β-MnO2 mitigated stress through a rutile-to-brookite phase transition which occurred in the unstrained Li0.73MnO2-β and under tensile strain in LixMnO2-β for x = 0.00, 0.03, 0.12, and 0.24. In both the bulk and nanorod β-MnO2 the brookite phase was succeeded by structural breakdown leading to fracture and served as an indicator for imminent structural failure upon more tensile strain application. / National Research Foundation (NRF)
|
47 |
Computer simulation studies of spinel LiMn2O4 and spinel LiNiXMn2-XO4 (0≤x≤2)Malatji, Kemeridge Tumelo January 2019 (has links)
Thesis (Ph.D. (Physics)) -- University of Limpopo, 2019 / LiMn2O4 spinel (LMO) is a promising cathode material for secondary lithium-ion
batteries which, despite its high average voltage of lithium intercalation, suffers
crystal symmetry lowering due to the Jahn-Teller active six-fold Mn3+ cations.
Although Ni has been proposed as a suitable substitutional dopant to improve the
energy density of LiMn2O4 and enhance the average lithium intercalation voltage,
the thermodynamics of Ni incorporation and its effect on the electrochemical
properties of this spinel are not fully understood.
Firstly, structural, electronic and mechanical properties of spinel LiMn2O4 and
LiNixMn2-xO4 have been calculated out using density functional theory employing the
pseudo-potential plane-wave approach within the generalised gradient
approximation, together with Virtual Cluster Approximation. The structural
properties included equilibrium lattice parameters; electronic properties cover both
total and partial density of states and mechanical properties investigated elastic
properties of all systems. Secondly, the pressure variation of several properties was
investigated, from 0 GPa to 50 GPa. Nickel concentration was changed and the
systems LiNi0.25Mn1.75O4, LiNi0.5Mn1.5O4 LiNi0.75Mn1.25O4 and LiNi0.875Mn1.125O4 were
studied. Calculated lattice parameters for LiMn2O4 and LiNi0.5Mn1.5O4 systems are
consistent with the available experimental and literature results. The average
Mn(Ni)-O bond length for all systems was found to be 1.9 Å. The bond lengths
decreased with an increase in nickel content, except for LiNi0.75Mn1.25O4, which gave
the same results as LiNi0.25Mn1.75O4. Generally, analysis of electronic properties
predicted the nature of bonding for both pure and doped systems with partial density
of states showing the contribution of each metal in our systems. All systems are
shown to be metallic as it has been previously observed for pure spinel LiMn2O4,
and mechanical properties, as deduced from elastic properties, depicted their
stabilities.
Furthermore, the cluster expansion formalism was used to investigate the nickel
doped LiMn2O4 phase stabilities. The method determines stable multi-component
crystal structures and ranks metastable structures by the enthalpy of formation while iv
maintaining the predictive power and accuracy of first-principles density functional
methods. The ground-state phase diagram with occupancy of Mn 0.81 and Ni 0.31
generated various structures with different concentrations and symmetries. The
findings predict that all nickel doped LMO structures on the ground state line are
most likely stable. Relevant structures (Li4Ni8O16, Li12MnNi17O48, Li4Mn6Ni2O16,
Li4Mn7NiO16 and Li4Mn8O16) were selected on the basis of how well they weighed
the cross-validation (CV) score of 1.1 meV, which is a statistical way of describing
how good the cluster expansion is at predicting the energy of each stable structure.
Although the structures have different symmetries and space groups they were
further investigated by calculating the mechanical and vibrational properties, where
the elastic constants and phonon vibrations indicated that the structures are stable
in accordance with stability conditions of mechanical properties and phonon
dispersions.
Lastly, a computer program that identifies different site occupancy configurations for
any structure with arbitrary supercell size, space group or composition was
employed to investigate voltage profiles for LiNixMn2-xO4. The density functional
theory calculations, with a Hubbard Hamiltonian (DFT+U), was used to study the
thermodynamics of mixing for Li(Mn1-xNix)2O4 solid solution. The results suggested
that LiMn1.5Ni0.5O4 is the most stable composition from room temperature up to at
least 1000K, which is in excellent agreement with experiments. It was also found
that the configurational entropy is much lower than the maximum entropy at 1000K,
indicating that higher temperatures are required to reach a fully disordered solid
solution. The maximum average lithium intercalation voltage of 4.8 eV was
calculated for the LiMn1.5Ni0.5O4 composition which correlates very well with the
experimental value. The temperature has a negligible effect on the Li intercalation
voltage of the most stable composition. The approach presented here shows that
moderate Ni doping of the LiMn2O4 leads to a substantial change in the average
voltage of lithium intercalation, suggesting an attractive route for tuning the cathode
properties of this spinel. / National Research Foundation (NRF)
|
48 |
Synthesis And Properties Of Self-assembled C/sicn Nanocomposite Derived From Polymer PrecursorsLi, Cheng 01 January 2012 (has links)
The properties of C/SiCN nanocomposites synthesized by thermal decomposition of polymer precursors were studied in this work. The novel polymer-to-ceramic process enables us to tailor the ceramic structure in atomic level by designing the starting chemicals and pyrolysis procedures. It is of both fundamental and practical significance to investigate the properties and structures relationship of the nanocomposites. In this work, we explored their application potential in using as anode of lithium-ion secondary batteries. The structure and structural evolution of C/SiCN nanocomposite were investigated by using XRD, FTIR, SEM, TEM, Solid state NMR and Raman spectroscopy. The results revealed the nanocomposites consisted of amorphous SiCxNx-4 matrix and carbon nanoclusters distributed within it. The size of the carbon was measured by Raman spectroscopy, varied with starting chemicals and pyrolysis temperature. The electronic properties of the C/SiCN nanocomposite were studied by measuring the IV curves and a.c. impedance. The d.c. conductivity increased with carbon content and pyrolysis temperatures. The impedance spectra and fitted equivalent circuit results confirmed the existence of two phases in the nanocomposite. The possibility of using C/SiCN as anode in lithium-ion secondary batteries was investigated by electrochemical measurements, namely cyclic voltammetry, galvanostatic cyclic test and electrochemical impedance spectroscopy. The galvanostatic measurements showed that the nanocomposite with 26% of carbon nanoclusters exhibited a specific capacity of 480 mAh/g, iv which is 30% higher than that of commercial graphite anode. The high capacity of the nanocomposites is attributed to the formation of a novel structure around C/SiCN interface. The excellent electrochemical properties, together with the simple, low-cost processing, make the nanocomposites very promising for Li-ion battery applications
|
49 |
Electrochemical Model-Based State of Charge and State of Health Estimation of Lithium-Ion BatteriesBartlett, Alexander P. 08 October 2015 (has links)
No description available.
|
50 |
Correlating Interfacial Structure and Dynamics to Performance in Lithium Metal BatteriesMay, Richard January 2022 (has links)
While the process of electrifying transportation is already underway, competing with fossil fuels in applications such as long-range vehicles and aircrafts will require energy densities that are beyond what is achievable using conventional Li-ion battery chemistries. Li metal batteries are promising candidates for such applications, yet meeting cycle life, power density, and safety demands while utilizing the unmatched specific capacity of Li metal anodes is a formidable challenge.
It is well known that the interfacial layer of electrolyte decomposition products which forms on the Li surface during electrochemical cycling (i.e. the solid electrolyte interphase (SEI)) is critical in dictating Li deposit morphology and subsequent performance. However, both the composition and arrangement of the SEI are difficult to study because the SEI is just nanometers-thin, air-sensitive, and evolves as a function of electrochemical cycling protocol. Thus, it is important to develop in situ and operando techniques which are capable of characterizing the SEI in its native environment. Here, we study interphase formation in carbonate, ether, solid ceramic, and highly concentrated electrolytes to develop a framework for the general design of electrolytes and SEIs for Li metal batteries.
In the first chapter, we broadly motivate electrochemical energy storage devices and define the metrics which make them attractive compared to alternative forms of energy storage. We then describe Li-based batteries, outline the differences between Li-ion and Li metal batteries, and present some of the key advantages and challenges that Li metal chemistries face. After, we provide a classical description of electrodeposition frameworks, focusing on the effects of charge-transfer kinetics and ion transport on deposition morphology. Then, we present the SEI as a factor which convolutes this process in Li metal anodes and describe how the SEI is formed and arranged on the electrode surface. Finally, we describe common tools used to characterize the SEI and how these may be used to design future electrolytes.
The second chapter focuses on the effect of potassium additives on conventional carbonate electrolytes. Recent work has shown that alkali metal additives can lead to smooth Li deposits, yet the underlying mechanisms are not well understood. In this work, we demonstrate that alkali metal additives (here, K+) alter SEI composition, thickness, and solubility. Through post-mortem elemental analyses, we find that K+ ions do not deposit, but instead modify the reactivity of the electrode-electrolyte interface. Using quantitative nuclear magnetic resonance (NMR) and density functional theory (DFT), we show that K+ mitigates solvent decomposition at the Li metal surface. These findings suggest that alkali metal additives can be leveraged to suppress the formation of undesired SEI components (e.g., Li2CO3, soluble organic species), serving as an alternative approach for SEI modification compared to sacrificial additives. We believe that our work will spur further interest in the underexplored area of cation engineering.
In the third chapter, we examine both chemical structure and ion dynamics in the SEI, correlating these properties to electrochemical performance to guide the design of new electrolytes. We use a combination of NMR spectroscopy and X-ray photoelectron spectroscopy (XPS) to show that fast Li transport, well-ordered SEI architectures, and low solubility at the electrode/SEI interface in 0.5 M LiNO3 + 0.5 M LiTFSI electrolyte bi-salt in 1,3-dioxolane:dimethoxyethane (DOL:DME, 1:1, v/v) are responsible for the formation of low-surface-area Li deposits and high Coulombic efficiency (CE). This improved performance in the presence of LiNO3 is observed despite the fact that there are higher quantities and more types of compounds in the SEI than in LiTFSI alone, suggesting that the identity of the electrolyte decomposition products, rather than the amount, alters plating. SEI design strategies that increase SEI stability and Li interfacial exchange rate are thus expected to lead to more even current distribution, ultimately providing a new framework to generate smooth Li morphologies during plating/stripping.
The fourth chapter describes the dynamic behavior of the interface between a lithium metal electrode and a solid-state electrolyte, lithium lanthanum zirconium oxide (Li7La3Zr2O12 or LLZO). The evolution of this interface throughout cycling involves multiscale mechanical and chemical heterogeneity at the micro- and nano-scale and plays a critical role in all-solid-state battery performance. These features are dependent on operating conditions such as current density and stack pressure. Here we report the coupling of operando acoustic transmission measurements with NMR and magnetic resonance imaging (MRI) to correlate changes in interfacial mechanics (such as contact loss and crack formation) with the growth of lithium microstructures during cell cycling. Together, the techniques reveal the chemo-mechanical behavior that governs lithium metal and LLZO interfacial dynamics at various stack pressure regimes and with voltage polarization.
In the fifth chapter, we redefine the premise of a class of Li metal battery electrolytes known as localized high concentration electrolytes (LHCE). LHCEs operate on the assumption that high concentration electrolytes (HCEs) may be augmented using a “diluent,” which interacts scarcely with both the ionic species and the Li metal surface, forming pockets of localized high concentration Li+ which have advantageous bulk and interfacial properties. We report on the use of operando NMR spectroscopy to observe electrolyte decomposition during Li stripping/plating and identify the influence of individual components in LHCEs on Li metal battery performance. Data from operando 19F solution NMR indicates that both bis(fluorosulfonyl)imide (FSI–) salt and bis(2,2,2-trifluoroethyl)ether (BTFE) diluent molecules play a key role in SEI formation, in contrast to prior reports that suggest diluents are inert. Using solution 17O NMR, we assess differences in solvation between LHCEs and low concentration electrolytes (LCEs). We find that BTFE diluents are reduced during Li metal battery operation, which can be detected with operando NMR, but not conventional electrochemical methods. Solid-state NMR (SSNMR) and XPS measurements confirm that LHCEs decompose to form an SEI on Li metal that contains organic BTFE reduction products (CF2, CF3), trapped BTFE, and high quantities of lithium fluoride, likely due to both BTFE and FSI– reduction. These chemical characterizations are correlated with changes in interfacial impedance measured separately at the anode and cathode using three-electrode electrochemical impedance spectroscopy (EIS). Insight into the mechanisms of SEI and CEI formation in LHCEs suggests that fluorinated ethers exhibit tunable reactivity that can be leveraged to control Li deposition behavior.
To conclude, we reflect on some of the broad guidelines for electrolyte and SEI engineering that we gleaned from the previous chapters. Finally, we highlight recent notable works which we think will enable major advances in interfacial characterization of Li metal batteries (focusing on in situ and operando techniques which can be applied to study both structure and dynamics in commercial setups).
|
Page generated in 0.0865 seconds