• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Profile of pre-s deletions in the natural history of chronic hepatitisB and hepatocellular carcinoma

Yeung, Pok, 楊博 January 2010 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
2

Characterization of viral hepatitis B integration sites in hepatocellular carcinoma.

January 2007 (has links)
Ng Wah. / Thesis submitted in: August 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 101-113). / Abstracts in English and Chinese. / ABSTRACT --- p.II / 摘要 --- p.IV / ACKNOWLEDGEMENT --- p.VI / TABLE OF CONTENTS --- p.VII / LIST OF TABLES --- p.X / LIST OF FIGURES --- p.XI / ABBREVIATIONS --- p.XII / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Etiological Factors of Hepatocellualr Carcinoma (HCC) --- p.4 / Chapter 1.2.1 --- Dietary Aflatoxins --- p.4 / Chapter 1.2.2 --- Liver Cirrhosis --- p.5 / Chapter 1.2.3 --- Alcohol Abuse --- p.6 / Chapter 1.2.4 --- Viral Hepatitis Infection --- p.6 / Chapter 1.3 --- Literature Review on the Investigations of HBV Integrants in HCC --- p.16 / Chapter 1.3.1 --- Affected Host Junctions --- p.17 / Chapter 1.3.2 --- Viral Junctions --- p.18 / Chapter 1.4 --- Restriction Site Polymerase Chain Reaction (RS-PCR) --- p.19 / Chapter 1.5 --- Aims of Thesis --- p.21 / Chapter Chapter 2 --- Materials and Methods --- p.22 / Chapter 2.1 --- Materials --- p.23 / Chapter 2.1.1 --- Chemicals --- p.23 / Chapter 2.1.2 --- Buffers --- p.24 / Chapter 2.1.3 --- Cell Cultures --- p.24 / Chapter 2.1.4 --- Nucleic Acids --- p.24 / Chapter 2.1.5 --- Enzymes --- p.25 / Chapter 2.1.6 --- Equipment --- p.25 / Chapter 2.1.7 --- Software and Web Resources --- p.26 / Chapter 2.2 --- Methods --- p.27 / Chapter 2.2.1 --- DNA Extraction --- p.27 / Chapter 2.2.2 --- RS-PCR --- p.31 / Chapter 2.2.3 --- Sequencing --- p.37 / Chapter 2.2.4 --- Spectral Karyotyping (SKY) --- p.38 / Chapter 2.2.5 --- Fluorescence In situ hybridization --- p.39 / Chapter Chapter 3 --- Investigation of HBV Integration Sites in HCC Cell lines --- p.45 / Chapter 3.1 --- Introduction --- p.46 / Chapter 3.2 --- Materials and Methods --- p.47 / Chapter 3.2.1 --- Cell Lines --- p.47 / Chapter 3.2.2 --- RS-PCR --- p.47 / Chapter 3.2.3 --- Spectral Karyotyping --- p.48 / Chapter 3.2.4 --- Tyramide Signal Amplification for HBV in FISH Analysis --- p.48 / Chapter 3.3 --- Results --- p.51 / Chapter 3.3.1 --- Identification of HBV Integration Sites in Cell Lines --- p.51 / Chapter 3.3.2 --- Evaluation of RSO Primer Efficiency --- p.52 / Chapter 3.3.3 --- SKY and FISH Analysis --- p.53 / Chapter 3.4 --- Discussion --- p.64 / Chapter 3.4.1 --- HBV Insertions in HCC Cell Lines --- p.64 / Chapter 3.4.2 --- Efficacy of RSO Primers --- p.65 / Chapter 3.4.3 --- Investigation of HBV Integration on Chromosomal Rearrangement --- p.65 / Chapter Chapter 4 --- Investigation of Hepatitis B Virus Integration Sites in Primary HCC --- p.67 / Chapter 4.1 --- Introduction --- p.68 / Chapter 4.2 --- Materials and Methods --- p.69 / Chapter 4.2.1 --- Patients --- p.69 / Chapter 4.2.2 --- RS-PCR --- p.70 / Chapter 4.3 --- Results --- p.72 / Chapter 4.3.1 --- HBV Integration Sites in Primary HCC Tumors and Adjacent Non- malignant Liver --- p.72 / Chapter 4.4 --- Discussion --- p.88 / Chapter 4.4.1 --- HBV integration Sites in Primary HCC Tumors and Adjacent Non- malignant Liver --- p.88 / Chapter 4.4.2 --- Summary on HBV Integrants Identified --- p.91 / Chapter Chapter 5 --- Proposed Future Studies --- p.98 / Chapter 5.1 --- Correlation of Structural Aberrations with HBV Integrations --- p.99 / Chapter 5.2 --- Transcriptional Expression Study on the Genes Interrupted by or Located near the Virus Host Junctions --- p.100 / Chapter Chapter 6 --- References --- p.101
3

Identification and characterization of pathogenetic events in the progression of human hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Hepatocellular carcinoma (HCC) is a highly malignant tumor that is prevalent in Southeast Asia and China, where hepatitis B viral (HBV) infection is the main etiologic factor. Despite a high incidence of HCC developing in patients with HBV-induced liver cirrhosis, the molecular events underlying the malignant liver progression remain largely unclear. In an effort to characterize the genetic abnormalities involved in the HBV-related liver carcinogenesis, genome-wide exploration by metaphase comparative genomic hybridization (CGH) was performed on 100 cirrhotic HCC tumors that were derived from chronic hepatitis B carriers. CGH analysis indicated chromosomal instability in both early and advanced stage tumors where common genomic copy gains on 1q, 8q and 17q, and deletions on 4q, 8p, 13q, 16q and 17p found in both groups are suggestive of early events in hepatocarcinogenesis. Nevertheless, a combined univariate and multivariate statistical analyses highlighted for the first time preferential regional 3q26-q28, 7q21-q22 and 7q34-q36 gains in association with advanced stage HCC. The novel aberrant gains identified here thus formed basis for further mapping analysis for causative genes related to HCC progression in this thesis. / Near 50% of the advanced stage HCC manifested copy gains of chr 7q21-q22. High resolution mapping analysis by cDNA microarray-based CGH nominated 13 amplified candidates within the region 7q21-q22 Analysis on the mRNA expresson levels of these genes in a cohort of primary HCC compared to paired adjacent non-tumorous liver tissues by quantitative RT-PCR (qRT-PCR) indicated the up-regulation of the PFTK1 (PFTAIRE protein kinase 1) gene as the only candidate that demonstrated a close association with advanced metastatic tumors. The effects of PFTK1 on cell proliferation, migration and invasive phenotypes were further studied to substantiate its role in HCC progression. Upon gene suppression of PFTK1 in vitro by RNA interference (RNAi), a significant reduction in chemotactic migration, cellular invasion and an inhibition on cell motility were indicated, albeit cell proliferation remained unaffected. / Sub-cellular localization study of translated PFTK1 protein indicated protein localization in both the nucleus and cytoplasm. This has led to the further investigations of potential PFTK1 function at both the transcriptional and protein levels. (Abstract shortened by UMI.) / Sy Ming Hui. / "July 2005." / Advisers: Winnie Yeo; Nathalie Wong. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3571. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 124-139). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
4

The role of direct carboxyl-terminal truncated HBx target genes in hepatocellular carcinoma. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Zhu, Ranxu. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 123-142). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
5

Determination of the differential roles of wild-type and C-terminal truncated hepatitis B virus X protein in hepatocarcinogenesis and construction of inducible cells expressing truncated HBx.

January 2007 (has links)
Li, Sai Kam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 162-179). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract in Chinese (摘要) --- p.ii / Acknowledgements --- p.iii / Table of Content --- p.iv / Abbreviations --- p.xi / List of Figures --- p.xiv / List of Tables --- p.xvii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Hepatitis B Virus / Chapter 1.1.1 --- General information --- p.1 / Chapter 1.1.2 --- Classification --- p.2 / Chapter 1.1.3 --- Virus life cycle and genome --- p.3 / Chapter 1.1.4 --- Hepatitis B virus X protein (HBx) --- p.7 / Chapter 1.2 --- Enigmatic functions of HB --- p.x / Chapter 1.2.1 --- HBx as a transactivator --- p.10 / Chapter 1.2.2 --- HBx as a cell cycle regulator --- p.12 / Chapter 1.2.3 --- HBx as an apoptosis modulator --- p.13 / Chapter 1.3 --- Etiology of HBV-mediated hepatocarcinogenesis --- p.14 / Chapter 1.4 --- Clinical mutants of HBV --- p.16 / Chapter 1.5 --- Hypothesis and aims of the research --- p.16 / Chapter 1.6 --- Basis of Tet-On system --- p.18 / Chapter CHPATER 2 --- EXPERIMENT MATERIALS / Chapter 2.1 --- Cell culture / Chapter 2.1.1 --- Cell-lines --- p.21 / Chapter 2.1.2 --- Culture medium --- p.22 / Chapter 2.1.3 --- Culture medium supplements --- p.23 / Chapter 2.2 --- Reagents for subcloning / Chapter 2.2.1 --- Reagents for polymerase chain reaction (PCR) --- p.24 / Chapter 2.2.2 --- Reagents for restriction enzyme digestion --- p.24 / Chapter 2.2.3 --- Reagents for ligation --- p.25 / Chapter 2.2.4 --- Reagents for electrophoresis --- p.25 / Chapter 2.2.5 --- Reagents for E. coli DH5a preparation --- p.25 / Chapter 2.2.6 --- Materials for bacterial culture work --- p.27 / Chapter 2.3 --- Reagents for subcellular localization study / Chapter 2.3.1 --- Reagents for cell staining --- p.28 / Chapter 2.3.2 --- Reagents for mounting slides --- p.29 / Chapter 2.3.3 --- Materials for site-directed mutagenesis --- p.29 / Chapter 2.4 --- Reagents for cell cycle analysis and cellular proliferation / Chapter 2.4.1 --- Reagents for cell cycle analysis --- p.29 / Chapter 2.4.2 --- Reagents for cellular proliferation study --- p.30 / Chapter 2.5 --- Reagents for protein expression study / Chapter 2.5.1 --- Cell lysis buffer --- p.30 / Chapter 2.5.2 --- Reagents for SDS-PAGE --- p.30 / Chapter 2.5.3 --- Reagents for Western blot --- p.33 / Chapter 2.5.4 --- Antibodies --- p.34 / Chapter 2.6 --- Reagents for gene expression study / Chapter 2.6.1 --- Reagents for RNA extraction --- p.36 / Chapter 2.6.2 --- Reagents for first strand cDNA synthesis --- p.37 / Chapter 2.6.3 --- Reagents for real-time PCR --- p.37 / Chapter 2.7 --- Reagents for establishment of Tet-On inducible stable cell-lines / Chapter 2.7.1 --- Reagents for MTT assay --- p.38 / Chapter 2.7.2 --- Reagents for selection of stable clones --- p.38 / Chapter 2.8 --- Vectors used in the project / Chapter 2.8.1 --- Vectors for subcellular localization study --- p.39 / Chapter 2.8.2 --- Vectors for establishment of Tet-on inducible cell-lines --- p.39 / Chapter 2.9 --- Primers used in the project / Chapter 2.9.1 --- Primers used for subcloning --- p.42 / Chapter 2.9.2 --- Primers used for site-directed mutagenesis --- p.43 / Chapter 2.9.3 --- Primers used in real-time chain polymerase reaction --- p.43 / Chapter CHAPTER 3 --- RESEARCH METHODS / Chapter 3.1 --- Subcloning of HBx and mutant genes into a green fluorescence protein (GFP) expression vector / Chapter 3.1.1 --- Amplification of HBxWt,HBxΔC44 and HBxAN60 genes --- p.45 / Chapter 3.1.2 --- Purification of PCR products --- p.46 / Chapter 3.1.3 --- Restriction enzyme digestion --- p.47 / Chapter 3.1.4 --- Ligation of gene products with pEGFP-C 1 vector --- p.47 / Chapter 3.1.5 --- Preparation of chemically competent bacterial cells E. coli strain DH5α --- p.47 / Chapter 3.1.6 --- Transformation of the ligation product into competent cells --- p.48 / Chapter 3.1.7 --- PCR confirmation of successful ligation --- p.48 / Chapter 3.1.8 --- Small scale preparation of bacterial plasmid DNA --- p.49 / Chapter 3.1.9 --- DNA sequencing of the cloned plasmid DNA --- p.50 / Chapter 3.1.10 --- Large scale preparation of target recombinant plasmid DNA --- p.50 / Chapter 3.2 --- Subcellular localization pattern study / Chapter 3.2.1 --- Cell transfection --- p.51 / Chapter 3.2.2 --- Mitochondria and nucleus staining --- p.52 / Chapter 3.2.3 --- Epi-fluorescence microscopy --- p.53 / Chapter 3.2.4 --- Analysis of fluorescence images --- p.53 / Chapter 3.2.5 --- In vitro site-directed mutagenesis --- p.53 / Chapter 3.3 --- Cell cycle phase analysis with flow cytometry / Chapter 3.3.1 --- Cell transfection --- p.55 / Chapter 3.3.2 --- Cell staining --- p.55 / Chapter 3.3.3 --- Flow cytometry --- p.55 / Chapter 3.4 --- Cellular proliferation quantification by BrdU proliferation assay / Chapter 3.4.1 --- Cell transfection --- p.57 / Chapter 3.4.2 --- BrdU ELISA measurement --- p.57 / Chapter 3.5 --- Protein expression / Chapter 3.5.1 --- Cell lysate collection --- p.58 / Chapter 3.5.2 --- Quantification of protein samples --- p.59 / Chapter 3.5.3 --- SDS-PAGE --- p.59 / Chapter 3.5.4 --- Western blot --- p.60 / Chapter 3.5.5 --- Western blot luminal detection --- p.60 / Chapter 3.6 --- Gene expression / Chapter 3.6.1 --- Primer design --- p.61 / Chapter 3.6.2 --- Cell transfection --- p.61 / Chapter 3.6.3 --- RNA extraction --- p.61 / Chapter 3.6.4 --- Reverse transcription for first strand complementary DNA (cDNA) --- p.63 / Chapter 3.6.5 --- Quantitative real-time PCR --- p.63 / Chapter 3.7 --- Establishment of Tet-On inducible stable cell-lines / Chapter 3.7.1 --- Subcloning of HBx gene into pTRE2 vector --- p.64 / Chapter 3.7.2 --- Construction of WRL68/Tet-On stable cell-lines --- p.64 / Chapter 3.7.3 --- Construction of WRL68/Tet-On HBx and mutants expression cell-lines --- p.68 / Chapter 3.7.4 --- Characterization of Tet-On gene expression monoclones --- p.69 / Chapter 3.8 --- Statistical analyses --- p.70 / Chapter CHPATER 4 --- STUDY ON MITOCHONDRIA TARGETING / Chapter 4.1 --- Establishment of pEGFP-Cl-HBx and mutants constructs --- p.71 / Chapter 4.2 --- Transactivation C-terminus domain is essential for granular localization --- p.73 / Chapter 4.3 --- Wild-type HBx localizes in mitochondria --- p.76 / Chapter 4.4 --- C-terminal transactivation domain is sufficient for mitochondria targeting --- p.79 / Chapter 4.5 --- Mapping of the HBx region crucial for mitochondria targeting --- p.81 / Chapter 4.6 --- The 111-117 amino acids in HBx do not work as a signal peptide --- p.83 / Chapter 4.7 --- Site-directed mutagenesis identifies the key amino acid at 115 in HBx for mitochondrial targeting --- p.85 / Chapter CHAPTER 5 --- CELL PROLIFERATION AND REGULATION / Chapter 5.1 --- Alteration of S-phase distribution in cell cycle --- p.88 / Chapter 5.2 --- Analysis of DNA synthesis using BrdU proliferation ELISA --- p.92 / Chapter 5.3 --- Differential molecular regulation of cell cycle --- p.94 / Chapter 5.4 --- Regulation of the mRNA expression levels of cyclin-dependent kinases inhibitors p2raf/cipl and p27kipl --- p.98 / Chapter CHAPTER 6 --- TRANSACTIVATION AND RAS/RAF/MAPK PHOSPHORYLATION / Chapter 6.1 --- Determination of p53-dependency of p21、vaf/cipl expression --- p.101 / Chapter 6.2 --- Ras/Raf/MAPK pathway activation by HBx variants / Chapter 6.2.1 --- ERK1/2 phophorylation by HBx variants --- p.104 / Chapter 6.2.2 --- ERK inhibition blocks the regulation effect on p53Wt and p21waf/cipl --- p.107 / Chapter 6.3 --- Transactivation activity on oncogenes/ proto-oncogenes / Chapter 6.3.1 --- Effect on c-myc (NM´ؤ002467) mRNA expression --- p.109 / Chapter 6.3.2 --- Effect on RhoC (NM_017744) and Rabl4 (NM´ؤ016322) mRNA expression --- p.112 / Chapter CHAPTER 7 --- CONSTRUCTION OF TET-ON INDUCIBLE CELL-LINES / Chapter 7.1 --- Establishment of WRL/Tet-On monoclonal cell-lines Page / Chapter 7.1.1 --- Determination of geneticin selection dosage --- p.116 / Chapter 7.1.2 --- Selection of the best WRL/TOn clone using luciferase assay --- p.118 / Chapter 7.2 --- Establishment of inducible WRL/TOn/Gene monoclonal cell-lines / Chapter 7.2.1 --- Determination of hygromycin selection dosage --- p.120 / Chapter 7.2.2 --- Selection of positive WRL/TOn/Gene clones with viral genes --- p.122 / Chapter 7.3 --- Characterization of TOXDC1 cell-line / Chapter 7.3.1 --- Cell morphology --- p.125 / Chapter 7.3.2 --- Growth pattern of TOXDC1 --- p.126 / Chapter 7.3.3 --- HBxAC44 induced p21waf/cipl mRNA expression --- p.127 / Chapter 7.3.4 --- Doxycycline concentration dependent HBxAC44 expression in TOXDC1 --- p.129 / Chapter CHAPTER 8 --- DISCUSSION / Chapter 8.1 --- Selection of cell model / Chapter 8.1.1 --- Selection of cell models --- p.130 / Chapter 8.1.2 --- Selection of truncation mutant --- p.131 / Chapter 8.2 --- Differential sub-cellular localization of HBx and its variants / Chapter 8.2.1 --- Mechanisms of mitochondria targeting --- p.132 / Chapter 8.2.2 --- Mitochondria as site of HBx-induced apoptosis --- p.134 / Chapter 8.2.3 --- Stimulation of calcium release from mitochondria by wild-type HBx --- p.135 / Chapter 8.3 --- Cell cycle distribution profiling and its regulations / Chapter 8.3.1 --- Cell cycle pattern and cell proliferation --- p.136 / Chapter 8.3.2 --- Differential cell cycle molecular pathway activation --- p.138 / Chapter 8.4 --- Ras/Raf/MAPK mediated transactivation by HBxWt and its mutants / Chapter 8.4.1 --- p53-mediated p21waf/cipl expression --- p.142 / Chapter 8.4.2 --- ERK-mediated p21waf/cipl and wild-type p53 mRNA expression --- p.143 / Chapter 8.4.3 --- Regulation of oncogenes/ proto-oncogenes expression --- p.147 / Chapter 8.5 --- General discussions on differential effects of HBxWt and HBxAC44 --- p.149 / Chapter 8.6 --- Establishment of Tet-On/HBxAC44 cell-line TOXDC1 --- p.153 / Chapter 8.7 --- Conclusions --- p.154 / Chapter 8.8 --- Future Prospects / Chapter 8.8.1 --- From mitochondria targeting to calcium signaling --- p.157 / Chapter 8.8.2 --- Construction of a complete cell cycle regulation pathway --- p.158 / Chapter 8.8.3 --- Elucidation of the transcriptional transactivation regulation --- p.159 / Chapter 8.8.4 --- To make the best use of the Tet-on stable cell-line TOXDC1 --- p.159 / Chapter 8.8.5 --- Study with other carboxy-terminal truncation mutants --- p.160 / Chapter 8.8.6 --- In vivo study --- p.160 / REFERENCES --- p.162
6

Characterization of activating transcription factor 5 in HCC carcinogenesis.

January 2007 (has links)
Gho Wai-Man. / Thesis submitted in: August 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 114-123). / Abstracts in English and Chinese. / ABSTRACT --- p.I / 摘要 --- p.IV / ACKNOWLEDGEMENT --- p.VI / TABLE OF CONTENT --- p.VII / LIST OF TABLES --- p.XII / LIST OF FIGURES --- p.XIII / ABBREVIATIONS --- p.XVI / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Introduction --- p.2 / Chapter 1.2 --- Epidemiology --- p.2 / Chapter 1.3 --- Etiological factors --- p.6 / Chapter 1.3.1 --- Viral Hepatitis Infection --- p.6 / Chapter 1.3.1.1 --- Hepatitis B Virus (HBV) --- p.7 / Chapter 1.3.1.2 --- Hepatitis C Virus (HCV) --- p.9 / Chapter 1.3.2 --- Aflatoxin Exposure --- p.10 / Chapter 1.3.3 --- Alcohol Abuse --- p.11 / Chapter 1.3.4 --- Liver Cirrhosis --- p.12 / Chapter 1.4 --- Genetic alterations in hcc --- p.16 / Chapter 1.4.1 --- Chromosomal Gain --- p.16 / Chapter 1.4.2 --- Chromosomal Loss --- p.17 / Chapter 1.5 --- Discovery of common activating transcription factor 5 (atf5) down-regulations in hcc --- p.19 / Chapter 1.5.1 --- Chromosome 19 Aberration in HCC --- p.19 / Chapter 1.5.2 --- Discovery of High Frequency of ATF5 Down-regulations --- p.19 / Chapter 1.5.3 --- Activating Transcription Factor Family --- p.20 / Chapter 1.6 --- Aim of thesis --- p.28 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.29 / Chapter 2.1 --- Materials --- p.30 / Chapter 2.1.1 --- Chemicals --- p.30 / Chapter 2.1.2 --- Buffers --- p.31 / Chapter 2.1.3 --- Cell culture --- p.31 / Chapter 2.1.4 --- Nucleic acids --- p.32 / Chapter 2.1.5 --- Enzymes --- p.32 / Chapter 2.1.6 --- Equipment --- p.32 / Chapter 2.1.7 --- Kits --- p.33 / Chapter 2.1.8 --- Software and Web Resource --- p.33 / Chapter 2.2 --- Dna extraction --- p.34 / Chapter 2.2.1 --- Cell Lines --- p.34 / Chapter 2.2.2 --- Primary HCC --- p.34 / Chapter 2.2.3 --- Lymphocytic DNA --- p.35 / Chapter 2.3 --- Rna extraction --- p.36 / Chapter 2.4 --- Dna sequencing --- p.38 / Chapter 2.4.1 --- Polymerase Chain Reaction (PCR) --- p.38 / Chapter 2.4.2 --- Cycle Sequencing --- p.39 / Chapter 2.5 --- Dual-labeled fluirescence in situ hybridization (fish) --- p.41 / Chapter 2.5.1 --- FISH Probe Preparation --- p.41 / Chapter 2.5.1.1 --- Preparation of Human Bacterial Artificial Chromosome (BAC) --- p.41 / Chapter 2.5.1.2 --- Nick Translation --- p.41 / Chapter 2.5.2 --- FISH --- p.42 / Chapter 2.6 --- 5-aza-2'-deoxycytidine & trichostatin a treatment on cell lines --- p.43 / Chapter 2.7 --- Bisulfite modificaiton of dna --- p.43 / Chapter 2.8 --- Methylation-specific pcr (msp) --- p.44 / Chapter 2.9 --- Bisulfite dna sequencing --- p.44 / Chapter 2.10 --- Quantitative reverse transcription pcr (qrt-pcr) --- p.46 / Chapter 2.11 --- In-vitro and in-vivo functinal examination --- p.49 / Chapter 2.11.1 --- ATF5 Transfection --- p.49 / Chapter 2.11.2 --- Cell Growth Assay --- p.50 / Chapter 2.11.3 --- Xenograft Development --- p.51 / Chapter 2.12 --- codelink expression microarray --- p.51 / Chapter 2.13 --- Statistical analysis --- p.53 / Chapter CHAPTER 3 --- INACTIVATION OF MECHANISMS UNDERLYING ATF5 DOWN-REGULATION --- p.54 / Chapter 3.1 --- Introduction --- p.55 / Chapter 3.2 --- Materials and methods --- p.58 / Chapter 3.2.1 --- Cell Lines --- p.58 / Chapter 3.2.2 --- Mutational Analysis --- p.58 / Chapter 3.2.3 --- Copy Number Loss --- p.59 / Chapter 3.2.4 --- Epigenetic Control --- p.59 / Chapter 3.3 --- Results --- p.67 / Chapter 3.3.1 --- Sequencing Analysis of A TF5 Gene --- p.67 / Chapter 3.3.2 --- FISH Analysis of ATF5 Copy Number --- p.73 / Chapter 3.3.3 --- Epigenetic Control of A TF5 Expression --- p.73 / Chapter 3.4 --- Discussion --- p.82 / Chapter CHAPTER 4 --- FUNCTIONAL EXAMINATION AND INVESTIGATION OF DOWNSTREAM TARGETS MODULATED BY ATF5 --- p.85 / Chapter 4.1 --- Introduction --- p.86 / Chapter 4.2 --- Materials and methods --- p.88 / Chapter 4.2.1 --- Cell Lines --- p.88 / Chapter 4.2.2 --- Plasmids and Transfection --- p.88 / Chapter 4.2.3 --- Cell Growth Assay --- p.88 / Chapter 4.2.4 --- Xenograft Development --- p.88 / Chapter 4.2.5 --- CodeLink Expression Microarray --- p.89 / Chapter 4.2.6 --- Quantitative RT-PCR --- p.90 / Chapter 4.2.7 --- Statistical analysis --- p.90 / Chapter 4.3 --- Results --- p.91 / Chapter 4.3.1 --- Cell Proliferation --- p.91 / Chapter 4.3.1.1 --- In-Vitro Examination --- p.91 / Chapter 4.3.1.2 --- In-Vivo Examination --- p.91 / Chapter 4.3.2 --- Microarray A nalysis --- p.91 / Chapter 4.3.3 --- Correlation of A TF5 with Id-1 Expression --- p.103 / Chapter 4.4 --- Discussion --- p.106 / Chapter CHAPTER 5 --- PROPOSED FUTURE INVESTIGATIONS --- p.110 / Chapter 5.1 --- inactivation mechanisms of atf5 gene --- p.111 / Chapter 5.2 --- Molecular pathways modulated by atf5 --- p.112 / Chapter CHAPTER 6 --- REFERENCES --- p.114
7

Identification of peroxisome proliferator-activated receptor alpha (PPARα)-dependent genes involved in peroxisome proliferator-induced hepatocarcinogenesis.

January 2006 (has links)
Leung Wan-chi. / Thesis submitted in: November 2005. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 276-284). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese Version) --- p.v / Acknowledgements --- p.viii / Tables of Contents --- p.ix / List of Abbreviations --- p.xxx / List of Figures --- p.xxxiii / List of Tables --- p.xlii / Chapter Chapter 1 --- Literature review --- p.1 / Chapter 1.1 --- Peroxisome proliferator activator receptors --- p.1 / Chapter 1.2 --- Peroxisome proliferators --- p.6 / Chapter 1.2.1 --- Hepatomegaly --- p.9 / Chapter 1.2.2 --- Peroxisome proliferation --- p.11 / Chapter 1.2.3 --- Target genes regulation --- p.12 / Chapter 1.2.4 --- Hypolipidemic effect --- p.16 / Chapter 1.2.5 --- Hepatocarcinogenesis --- p.18 / Chapter 1.3 --- Mode of actions --- p.20 / Chapter 1.3.1 --- Oxidative stress --- p.21 / Chapter 1.3.2 --- Inhibition of apoptosis --- p.22 / Chapter 1.3.2 --- Increase in cell replication --- p.22 / Chapter 1.3.4 --- Alterations in cell cycle control --- p.23 / Chapter 1.4 --- Objectives --- p.23 / Chapter Chapter 2 --- Materials and Methods --- p.25 / Chapter 2.1 --- Animal tail-genotyping --- p.25 / Chapter 2.1.1 --- Materials --- p.25 / Chapter 2.1.2 --- Methods --- p.28 / Chapter 2.2 --- Animal treatment --- p.29 / Chapter 2.2.1 --- Materials --- p.29 / Chapter 2.2.2 --- Methods --- p.29 / Chapter 2.3 --- Serum cholesterol and tryiglyceride analysis --- p.30 / Chapter 2.3.1 --- Materials --- p.31 / Chapter 2.3.2 --- Methods --- p.31 / Chapter 2.3.2.1 --- Serum preparation --- p.31 / Chapter 2.3.2.2 --- Serum cholesterol analysis --- p.31 / Chapter 2.3.2.3 --- Serum triglyceride analysis --- p.32 / Chapter 2.4 --- Histological analysis --- p.32 / Chapter 2.4.1 --- Materials --- p.32 / Chapter 2.4.2 --- Methods --- p.33 / Chapter 2.5 --- Total RNA isolation --- p.34 / Chapter 2.5.1 --- Materials --- p.34 / Chapter 2.5.2 --- Methods --- p.34 / Chapter 2.6 --- DNase I treatment of total liver RNA --- p.37 / Chapter 2.6.1 --- Materials --- p.37 / Chapter 2.6.2 --- Methods --- p.37 / Chapter 2.7 --- Reverse transcription (RT) of mRNA and non- fluorescent PCR (non-fluoroDD PCR) --- p.38 / Chapter 2.7.1 --- Materials --- p.43 / Chapter 2.7.2 --- Methods --- p.43 / Chapter 2.8 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.44 / Chapter 2.8.1 --- Materials --- p.44 / Chapter 2.8.2 --- Method --- p.44 / Chapter 2.9 --- Fluorescent differential display (fluoroDD) --- p.45 / Chapter 2.9.1 --- Materials --- p.45 / Chapter 2.9.2 --- Methods --- p.45 / Chapter 2.9.2.1 --- FluoroDD gel preparation --- p.45 / Chapter 2.9.2.2 --- Sample preparation and electrophoresis --- p.45 / Chapter 2.10 --- Excision of differentially expressed cDNA fragments --- p.46 / Chapter 2.10.1 --- Materials --- p.46 / Chapter 2.10.2 --- Methods --- p.46 / Chapter 2.11 --- Reamplification of differentally expressed cDNA fragments --- p.48 / Chapter 2.11.1 --- Materials --- p.48 / Chapter 2.11.2 --- Methods --- p.50 / Chapter 2.12 --- Subcloning of reamplified cDNA fragmens --- p.50 / Chapter 2.12.1 --- Materials --- p.53 / Chapter 2.12.2 --- Methods --- p.53 / Chapter 2.12.2.1 --- Ligation --- p.53 / Chapter 2.12.2.2 --- Transformation --- p.53 / Chapter 2.12.2.3 --- Phenol-choloroform extraction --- p.54 / Chapter 2.12.2.4 --- Confirmation of insert size by EcoRI digestion --- p.54 / Chapter 2.12.2.5 --- Mini-preparation of plasmid DNA from recombinant clones --- p.55 / Chapter 2.13 --- Sequencing of subcloned cDNA fragments --- p.55 / Chapter 2.13.1 --- Materials --- p.56 / Chapter 2.13.2 --- Methods --- p.56 / Chapter 2.13.2.1 --- Sequencing of fluoroDD cDNA fragments --- p.56 / Chapter 2.13.2.2 --- Blast search against computer database --- p.57 / Chapter 2.14 --- Northern blot analysis of sequenced cDNA fragments --- p.57 / Chapter 2.14.1 --- Materials --- p.58 / Chapter 2.14.2 --- Methods --- p.58 / Chapter 2.14.2.1 --- Formaldehyde agarose gel electrophoresis of total RNA --- p.58 / Chapter 2.14.2.2 --- Preparation of DIG-labeled RNA probes for hybridization --- p.59 / Chapter 2.14.2.3 --- Preparation of PCR DIG-labeled cDNA probes for hybridization --- p.60 / Chapter 2.14.2.4 --- Hybridization and colour development --- p.60 / Chapter Chapter 3 --- Results --- p.62 / Chapter 3.1 --- Confirmation of genotypes by PCR --- p.62 / Chapter 3.2 --- Body weight changes --- p.62 / Chapter 3.3 --- Organ weight changes --- p.67 / Chapter 3.4 --- Serum cholesterol and triglyceride levels --- p.70 / Chapter 3.5 --- Liver histology --- p.78 / Chapter 3.6 --- Reverse transcription (RT) of mRNA and non-fluorescent PCR (non-flurroDD PCR) --- p.114 / Chapter 3.7 --- Reverse transcription (RT) of mRNA and fluorescent PCR (fluoroDD PCR) --- p.125 / Chapter 3.8 --- Reamplification of fluorescent differential display (FDD) fragments --- p.138 / Chapter 3.9 --- Subcloning of reamplifled FDD fragments --- p.162 / Chapter 3.10 --- Sequencing of subcloned cDNA fragments --- p.176 / Chapter 3.11 --- Northern blot analysis of sequenced cDNA fragments --- p.195 / Chapter Chapter 4 --- Discussion --- p.250 / Chapter 4.1 --- Body weight changes --- p.250 / Chapter 4.2 --- Organ weight changes --- p.251 / Chapter 4.3 --- Serum cholesterol and triglyceride levels --- p.253 / Chapter 4.4 --- Liver histology --- p.254 / Chapter 4.5 --- "Functions and roles of identified PPARa-dependent and Wy-14,643- responsive genes" --- p.255 / Chapter 4.6 --- Mechanism of PP-induced hepatocarcinogeneis --- p.270 / Chapter Chapter 5 --- Conclusions --- p.274 / References --- p.276 / Appendix A Tables of preparation of reaction mix --- p.285 / Table A1. Preparation of animal tail genotyping PCR reaction --- p.285 / Table A2. Preparation of DNase I treatment --- p.285 / Table A3. Preparation of reverse transcription of non-fluoroDD and fluoroDD --- p.285 / Table A4. Preparation of non-fluoroDD and fluoroDD RT-PCR --- p.286 / Table A5. Preparation of reamplification of differentially expressed cDNA fragments --- p.286 / Table A6. Preparation of PCR reaction for DNA sequencing --- p.286 / Table A7. Preparation of PCR reaction for RNA probe --- p.287 / Table A8. Preparation of PCR reaction for cDNA probe --- p.287 / Appendix B DNA sequences and sequencing alignments of FluoroDD Fragments --- p.288 / Chapter B 1.1: --- DNA sequence of cDNA subclone AA1#2 (AP1 & ARP2) using M13 forward (-20) primer --- p.288 / Chapter B 1.2: --- "Sequencing alignment of cDNA subclone AA1#2 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.288 / Chapter B 1.3: --- Summary of sequence alignment of cDNA subclone AA1#2 with mouse Peci --- p.288 / Chapter B 2.1: --- DNA sequence of cDNA subclone AA1#3 (AP1 & ARP2) using M13 forward (-20) primer --- p.289 / Chapter B 2.2: --- "Sequencing alignment of cDNA subclone AA1#3 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.289 / Chapter B 2.3: --- Summary of sequence alignment of cDNA subclone AA1#3 with mouse Peci --- p.289 / Chapter B 3.1: --- DNA sequence of cDNA subclone AA1#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.290 / Chapter B 3.2: --- "Sequencing alignment of cDNA subclone AA1#4 with mouse peroxisomal delta 3, delta 2-enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.290 / Chapter B 3.3: --- Summary of sequence alignment of cDNA subclone AA1#4 with mouse Peci --- p.290 / Chapter B 4.1: --- DNA sequence of cDNA subclone AA1#20 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.291 / Chapter B 4.2: --- "Sequencing alignment of cDNA subclone AA1#20 with mouse peroxisomal delta 3, delta 2- enoyl-Coenzyme A isomerase (Peci) by BLAST searching against the National Center for Biotechnology Information database" --- p.291 / Chapter B 4.3: --- Summary of sequence alignment of cDNA subclone AA1#20 with mouse Peci --- p.291 / Chapter B 5.1: --- DNA sequence of cDNA subclone AA4#1 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.292 / Chapter B 5.2: --- Sequencing alignment of cDNA subclone AA4#1 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.292 / Chapter B 5.3: --- Summary of sequence alignment of cDNA subclone AA4#1 with mouse Apoa5 --- p.292 / Chapter B 6.1: --- DNA sequence of cDNA subclone AA4#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.293 / Chapter B 6.2: --- Sequencing alignment of cDNA subclone AA4#9 with mouse apolipoprotein A-V (Apoa5) by BLAST searching against the National Center for Biotechnology Information database --- p.293 / Chapter B 6.3: --- Summary of sequence alignment of cDNA subclone AA4#9 with mouse Apoa5 --- p.293 / Chapter B 7.1: --- DNA sequence of cDNA subclone AA5#5 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.294 / Chapter B 7.2: --- Sequencing alignment of cDNA subclone AA5#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.294 / Chapter B 7.3: --- Summary of sequence alignment of cDNA subclone AA5#5 with mouse mitochondrion --- p.294 / Chapter B 8.1: --- DNA sequence of cDNA subclone AA6#1 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.295 / Chapter B 8.2: --- Sequencing alignment of cDNA subclone AA6#1 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.295 / Chapter B 8.3: --- Summary of sequence alignment of cDNA subclone AA6#1 with mouse mitochondion --- p.295 / Chapter B 9.1: --- DNA sequence of cDNA subclone AA6#9 (AP 1 & ARP2) using Ml3 reverse primer --- p.296 / Chapter B 9.2: --- Sequencing alignment of cDNA subclone AA6#9 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.296 / Chapter B 9.3: --- Summary of sequence alignment of cDNA subclone AA6#9 with mouse mitochondrion --- p.296 / Chapter B 10.1: --- DNA sequence of cDNA subclone AA7#3 (AP 1 & ARP2) using Ml3 forward (-20) primer --- p.297 / Chapter B 10.2: --- Sequencing alignment of cDNA subclone AA7#3 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.297 / Chapter B 10.3: --- Summary of sequence alignment of cDNA subclone AA7#3 with mouse mitochondrion --- p.297 / Chapter B 11.1: --- DNA sequence of cDNA subclone AA7#5 (AP 1 & ARP2) using Ml3 reverse primer --- p.298 / Chapter B 11.2: --- Sequencing alignment of cDNA subclone AA7#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.298 / Chapter B 11.3: --- Summary of sequence alignment of cDNA subclone AA7#5 with mouse mitochondrion --- p.298 / Chapter B 12.1: --- DNA sequence of cDNA subclone AA10#1 (AP1 & ARP2) using M l3 forward (-20) primer --- p.299 / Chapter B 12.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.299 / Chapter B 12.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.299 / Chapter B 13.1: --- DNA sequence of cDNA subclone AA10#1 (AP 1 & ARP2) using M13 reverse primer --- p.300 / Chapter B 13.2: --- Sequencing alignment of cDNA subclone AA10#1 with mouse cysteine sulfinic acid decarboxylase (Csad) by BLAST searching against the National Center for Biotechnology Information database --- p.300 / Chapter B 13.3: --- Summary of sequence alignment of cDNA subclone AA10#1 with mouse Csad --- p.300 / Chapter B 14.1: --- DNA sequence of cDNA subclone AA12#4 (AP1 & ARP2) using Ml3 forward (-20) primer --- p.301 / Chapter B 14.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.301 / Chapter B 14.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.301 / Chapter B 15.1: --- DNA sequence of cDNA subclone AA12#4 (AP 1 & ARP2) using Ml3 reverse primer --- p.302 / Chapter B 15.2: --- "Sequencing alignment of cDNA subclone AA12#4 with mouse acetyl-coenzyme A dehydrogenase, medium chain (MCAD) by BLAST searching against the National Center for Biotechnology Information database" --- p.302 / Chapter B 15.3: --- Summary of sequence alignment of cDNA subclone AA12#4 with mouse MCAD --- p.302 / Chapter B 16.1: --- DNA sequence of cDNA subclone AB7#2 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.303 / Chapter B 16.2: --- "Sequencing alignment of cDNA subclone AB7#2 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.303 / Chapter B 16.3: --- Summary of sequence alignment of cDNA subclone AB7#2 with mouse UGT2b5 --- p.303 / Chapter B 17.1: --- DNA sequence of cDNA subclone AB7#8 (AP3 & ARP3) using M13 reverse primer --- p.304 / Chapter B 17.2: --- "Sequencing alignment of cDNA subclone AB7#8 with mouse UDP-glucuronosyltransferase 2 family, member 5 (UGT2b5) by BLAST searching against the National Center for Biotechnology Information database" --- p.304 / Chapter B 17.3: --- Summary of sequence alignment of cDNA subclone AB7#8 with mouse UGT2b5 --- p.304 / Chapter B 18.1: --- DNA sequence of cDNA subclone AB17#16 (AP3 & ARP3) using M13 reverse primer --- p.305 / Chapter B 18.2: --- Sequencing alignment of cDNA subclone AB17#16 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.305 / Chapter B 18.3: --- Summary of sequence alignment of cDNA subclone AB17#16 with mouse mitochondrion --- p.305 / Chapter B 19.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 forward (-20) primer --- p.306 / Chapter B 19.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.306 / Chapter B 20.1: --- DNA sequence of cDNA subclone AB18#4 (AP3 & ARP3) using M13 reverse primer --- p.307 / Chapter B 20.2: --- Sequencing alignment of cDNA subclone AB18#4 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.307 / Chapter B 20.3: --- Summary of sequence alignment of cDNA subclone AB 18#4 with mouse mitochondrion --- p.307 / Chapter B 21.1: --- DNA sequence of cDNA subclone AB19#2 (AP3 & ARP3) using M13 forward (-20) primer --- p.308 / Chapter B 21.2: --- Sequencing alignment of cDNA subclone AB 19#2 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.308 / Chapter B 21.3: --- Summary of sequence alignment of cDNA subclone AB19#2 with mouse mitochondrion --- p.308 / Chapter B 22.1: --- DNA sequence of cDNA subclone AB19#10 (AP3 & ARP3) using Ml3 reverse primer --- p.309 / Chapter B 22.2: --- Sequencing alignment of cDNA subclone AB 19#10 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.309 / Chapter B 22.3: --- Summary of sequence alignment of cDNA subclone AB19#10 with mouse mitochondrion --- p.309 / Chapter B 23.1: --- DNA sequence ofcDNA subclone AB22#9 (AP3 & ARP3) using M13 forward (-20) primer --- p.310 / Chapter B 23.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.310 / Chapter B 23.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.310 / Chapter B 24.1: --- DNA sequence of cDNA subclone AB22#9 (AP3 & ARP3) using Ml3 reverse primer --- p.311 / Chapter B 24.2: --- Sequencing alignment of cDNA subclone AB22#9 with mouse peroxisome biogenesis factor 16 (Pexl6) by BLAST searching against the National Center for Biotechnology Information database --- p.311 / Chapter B 24.3: --- Summary of sequence alignment of cDNA subclone AB22#9 with mouse Pexl6 --- p.311 / Chapter B 25.1: --- DNA sequence ofcDNA subclone AB24#9 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.312 / Chapter B 25.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.312 / Chapter B 25.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.312 / Chapter B 26.1: --- DNA sequence of cDNA subclone AB24#9 (AP3 & ARP3) using M13 reverse primer --- p.313 / Chapter B 26.2: --- Sequencing alignment of cDNA subclone AB24#9 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.313 / Chapter B 26.3: --- Summary of sequence alignment of cDNA subclone AB24#9 with mouse Cyp4al4 --- p.313 / Chapter B 27.1: --- DNA sequence of cDNA subclone AB25#6 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.314 / Chapter B 27.2: --- Sequencing alignment of cDNA subclone AB25#6 with mouse Cyp4a l4 by BLAST searching against the National Center for Biotechnology Information database --- p.314 / Chapter B 27.3: --- Summary of sequence alignment of cDNA subclone AB25#6 with mouse Cyp4al4 --- p.314 / Chapter B 28.1: --- DNA sequence of cDNA subclone AB26#17 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.315 / Chapter B 28.2: --- Sequencing alignment of cDNA subclone AB26#17 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.315 / Chapter B 28.3: --- Summary of sequence alignment of cDNA subclone AB26#17 with mouse Cyp4al4 --- p.315 / Chapter B 29.1: --- DNA sequence of cDNA subclone AB26#3Q (AP3 & ARP3) using M13 reverse primer --- p.316 / Chapter B 29.2: --- Sequencing alignment of cDNA subclone AB26#30 with mouse Cyp4al4 by BLAST searching against the National Center for Biotechnology Information database --- p.316 / Chapter B 29.3: --- Summary of sequence alignment of cDNA subclone AB26#30 with mouse Cyp4al4 --- p.316 / Chapter B 30.1: --- DNA sequence of cDNA subclone AB29#7 (AP3 & ARP3) using Ml3 forward (-20) primer --- p.317 / Chapter B 30.2: --- Sequencing alignment of cDNA subclone AB29#7 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.317 / Chapter B 30.3: --- Summary of sequence alignment of cDNA subclone AB29#7 with mouse catalase --- p.317 / Chapter B 31.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.318 / Chapter B 31.2: --- Sequencing alignment of cDNA subclone AC1#1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.318 / Chapter B 31.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.318 / Chapter B 32.1: --- DNA sequence of cDNA subclone AC1#1 (AP2 & ARP 19) using Ml3 reverse primer --- p.319 / Chapter B 32.2: --- Sequencing alignment of cDNA subclone AC 1# 1 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.319 / Chapter B 32.3: --- Summary of sequence alignment of cDNA subclone AC1#1 with mouse SPI --- p.319 / Chapter B 33.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 forward (-20) primer --- p.320 / Chapter B 33.2: --- Sequencing alignment of cDNA subclone AC 1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.320 / Chapter B 33.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.320 / Chapter B 34.1: --- DNA sequence of cDNA subclone AC1#2 (AP2& ARP 19) using M13 reverse primer --- p.321 / Chapter B 34.2: --- Sequencing alignment of cDNA subclone AC1#2 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.321 / Chapter B 34.3: --- Summary of sequence alignment of cDNA subclone AC1#2 with mouse SPI --- p.321 / Chapter B 35.1: --- DNA sequence ofcDNA subclone AC2#2 (AP2 & ARP19) using Ml3 reverse primer --- p.322 / Chapter B 35.2: --- Sequencing alignment of cDNA subclone AC2#2 with mouse bifunctional enzyme (PBFE) by BLAST searching against the National Center for Biotechnology Information database --- p.322 / Chapter B 35.3: --- Summary of sequence alignment of cDNA subclone AC2#2 with mouse PBFE --- p.322 / Chapter B 36.1: --- DNA sequence of cDNA subclone AC2#5 (AP2 & ARP19) using Ml3 reverse primer --- p.323 / Chapter B 36.2: --- Sequencing alignment of cDNA subclone AC2#5 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.323 / Chapter B 36.3: --- Summary of sequence alignment of cDNA subclone AC2#5 with mouse catalase --- p.323 / Chapter B 37.1: --- DNA sequence of cDNA subclone AC2#6 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.324 / Chapter B 37.2: --- Sequencing alignment of cDNA subclone AC2#6 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.324 / Chapter B 37.3: --- Summary of sequence alignment of cDNA subclone AC2#6 with mouse SPI --- p.324 / Chapter B 38.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP19) using Ml3 forward (-20) primer --- p.325 / Chapter B 38.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse Cyp2a5 by BLAST searching against the National Center for Biotechnology Information database --- p.325 / Chapter B 38.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse Cyp2a5 --- p.325 / Chapter B 39.1: --- DNA sequence ofcDNA subclone AC4#3 (AP2 & ARP 19) using M13 reverse primer --- p.326 / Chapter B 39.2: --- Sequencing alignment of cDNA subclone AC4#3 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.326 / Chapter B 39.3: --- Summary of sequence alignment of cDNA subclone AC4#3 with mouse SPI --- p.326 / Chapter B 40.1: --- DNA sequence of cDNA subclone AC7#5 (AP2& ARP 19) using M13 forward (-20) primer --- p.327 / Chapter B 40.2: --- Sequencing alignment of cDNA subclone AC7#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.327 / Chapter B 40.3: --- Summary of sequence alignment of cDNA subclone AC7#5 with mouse SPI --- p.327 / Chapter B 41.1: --- DNA sequence of cDNA subclone AD6#4 (AP2 & ARP 18) using Ml3 reverse primer --- p.328 / Chapter B 41.2: --- Sequencing alignment of cDNA subclone AD6#4 with mouse N-terminal Asn amidase (Ntanl) by BLAST searching against the National Center for Biotechnology Information database --- p.328 / Chapter B 41.3: --- Summary of sequence alignment of cDNA subclone AD6#4 with mouse Ntanl --- p.328 / Chapter B 42.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.329 / Chapter B 42.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.329 / Chapter B 42.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cvp4al0 --- p.329 / Chapter B 43.1: --- DNA sequence of cDNA subclone AD6#10 (AP2 & ARP18) using M13 reverse primer --- p.330 / Chapter B 43.2: --- Sequencing alignment of cDNA subclone AD6#10 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.330 / Chapter B 43.3: --- Summary of sequence alignment of cDNA subclone AD6#10 with mouse Cyp4al0 --- p.330 / Chapter B 44.1: --- DNA sequence of cDNA subclone AD8#2 (AP2 & ARP 18) using M13 forward (-20) primer --- p.331 / Chapter B 44.2: --- Sequencing alignment of cDNA subclone AD8#2with mouse Cyp4a l0 by BLAST searching against the National Center for Biotechnology Information database --- p.331 / Chapter B 44.3: --- Summary of sequence alignment of cDNA subclone AD8#2 with mouse Cvp4a10 --- p.331 / Chapter B 45.1: --- DNA sequence ofcDNA subclone AD8#7 (AP2 & ARP18) using Ml3 reverse primer --- p.332 / Chapter B 45.2: --- Sequencing alignment of cDNA subclone AD8#7 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.332 / Chapter B 45.3: --- Summary of sequence alignment of cDNA subclone AD8#7 with mouse Cyp4a10 --- p.332 / Chapter B 46.1: --- DNA sequence of cDNA subclone AD9#2 (AP2 & ARP 18) using Ml3 forward (-20) primer --- p.333 / Chapter B 46.2: --- Sequencing alignment of cDNA subclone AD9#2 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.333 / Chapter B 46.3: --- Summary of sequence alignment of cDNA subclone AD9#2 with mouse Cyp4al0 --- p.333 / Chapter B 47.1: --- DNA sequence of cDNA subclone AD9#3 (AP2 & ARP 18) using M13 reverse primer --- p.334 / Chapter B 47.2: --- Sequencing alignment of cDNA subclone AD9#3 with mouse Cyp4al0 by BLAST searching against the National Center for Biotechnology Information database --- p.334 / Chapter B 47.3: --- Summary of sequence alignment of cDNA subclone AD9#3 with mouse Cvp4a10 --- p.334 / Chapter B 48.1: --- DNA sequence ofcDNA subclone AF1#8 (AP10 & ARP13) using M13 forward (-20) primer --- p.335 / Chapter B 48.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.335 / Chapter B 48.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.335 / Chapter B 49.1: --- DNA sequence of cDNA subclone AF1#8 (AP 10 & ARP 13) using Ml3 reverse primer --- p.336 / Chapter B 49.2: --- Sequencing alignment of cDNA subclone AF1#8 with mouse very-long-chain acyl-coA synthetase (VLACS) by BLAST searching against the National Center for Biotechnology Information database --- p.336 / Chapter B 49.3: --- Summary of sequence alignment of cDNA subclone AF1#8 with mouse VLACS --- p.336 / Chapter B 50.1: --- DNA sequence of cDNA subclone AF21#5 (AP 10 & ARP 13) using M13 reverse primer --- p.337 / Chapter B 50.2: --- "Sequencing alignment ofcDNA subclone AF21#5 with mouse cell death-inducing DNA fragmentation factor, alpha subunit-like effector B (Cideb) by BLAST searching against the National Center for Biotechnology Information database" --- p.337 / Chapter B 50.3: --- Summary of sequence alignment of cDNA subclone AF21#5 with mouse Cideb --- p.337 / Chapter B 51.1: --- DNA sequence ofcDNA subclone AF25#6 (AP10 & ARP13) using M13 forward (-20) primer --- p.338 / Chapter B 51.2: --- Sequencing alignment of cDNA subclone AF25#6 with mouse major urinary protein 2 (MUPII) by BLAST searching against the National Center for Biotechnology Information database --- p.338 / Chapter B 51.3: --- Summary of sequence alignment of cDNA subclone AF25#6 with mouse MUP II --- p.338 / Chapter B 52.1: --- DNA sequence of cDNA subclone AF25#7 (AP 10 & ARP 13) using Ml3 reverse primer --- p.339 / Chapter B 52.2: --- Sequencing alignment of cDNA subclone AF25#7 with mouse major urinary protein 2 (MUP II) by BLAST searching against the National Center for Biotechnology Information database --- p.339 / Chapter B 52.3: --- Summary of sequence alignment of cDNA subclone AF25#7 with mouse MUPII --- p.339 / Chapter B 53.1: --- DNA sequence ofcDNA subclone AF30#4 (AP10 & ARP13) using M13 forward (-20) primer --- p.340 / Chapter B 53.2: --- Sequencing alignment of cDNA subclone AF30#4 with mouse mRNA for suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.340 / Chapter B 53.3: --- Summary of sequence alignment of cDNA subclone AF3Q#4 with mouse SAC1 --- p.340 / Chapter B 54.1: --- DNA sequence of cDNA subclone AF30#5 (AP 10 & ARP 13) using Ml3 reverse primer --- p.341 / Chapter B 54.2: --- Sequencing alignment of cDNA subclone AF30#5 with mouse mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.341 / Chapter B 54.3: --- Summary of sequence alignment of cDNA subclone AF30#5 with mouse mitochondrion --- p.341 / Chapter B 55.1: --- DNA sequence ofcDNA subclone AH1#6 (AP11 & ARP19) using M13 forward (-20) primer --- p.342 / Chapter B 55.2: --- Sequencing alignment of cDNA subclone AH1#6 with mouse EST by BLAST searching against the National Center for Biotechnology Information database --- p.342 / Chapter B 55.3: --- Summary of sequence alignment of cDNA subclone AH1#6 with mouse EST --- p.342 / Chapter B 56.1: --- DNA sequence of cDNA subclone AIl#5 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.343 / Chapter B 56.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST searching against the National Center for Biotechnology Information database --- p.343 / Chapter B 56.3: --- Summary of sequence alignment of cDNA subclone All#5 with mouse SPI --- p.343 / Chapter B 57.1: --- DNA sequence of cDNA subclone AI1#5 (AP6 & ARP4) using Ml3 reverse primer --- p.344 / Chapter B 57.2: --- Sequencing alignment of cDNA subclone AIl#5 with mouse serine (or cysteine) proteinase inhibitor (SPI) by BLAST --- p.344 / Chapter B 57.3: --- Summary of sequence alignment of cDNA subclone AIl #5 with mouse SPI --- p.344 / Chapter B 58.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using Ml3 forward (-20) primer --- p.345 / Chapter B 58.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.345 / Chapter B 58.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.345 / Chapter B 59.1: --- DNA sequence of cDNA subclone AI18#6 (AP6 & ARP4) using M13 reverse primer --- p.346 / Chapter B 59.2: --- Sequencing alignment of cDNA subclone AI18#6 with mouse argininosuccinate lyase (Asl) by BLAST searching against the National Center for Biotechnology Information database --- p.346 / Chapter B 59.3: --- Summary of sequence alignment of cDNA subclone AI18#6 with mouse Asl --- p.346 / Chapter B 60.1: --- DNA sequence ofcDNA subclone AJ1#4 (AP6 & ARP14) using Ml3 forward (-20) primer --- p.347 / Chapter B 60.2: --- Sequencing alignment of cDNA subclone AJ1#4 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.347 / Chapter B 60.3: --- Summary of sequence alignment of cDNA subclone AJ1#4 with mouse carboxylesterase --- p.347 / Chapter B 61.1: --- DNA sequence ofcDNA subclone AJ1#5 (AP6 & ARP14) using Ml3 reverse primer --- p.348 / Chapter B 61.2: --- Sequencing alignment of cDNA subclone AJ1#5 with mouse carboxylesterase by BLAST searching against the National Center for Biotechnology Information database --- p.348 / Chapter B 61.3: --- Summary of sequence alignment of cDNA subclone AJ1#5 with mouse carboxylesterase --- p.348 / Chapter B 62.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using M13 forward (-20) primer --- p.349 / Chapter B 62.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.349 / Chapter B 62.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.349 / Chapter B 63.1: --- DNA sequence ofcDNA subclone AJ2#10 (AP6 & ARP14) using Ml3 reverse primer --- p.350 / Chapter B 63.2: --- Sequencing alignment of cDNA subclone AJ2#10 with peroxisomal acyl-coA oxidase (AOX) by BLAST searching against the National Center for Biotechnology Information database --- p.350 / Chapter B 63.3: --- Summary of sequence alignment of cDNA subclone AJ2#10 with mouse AOX --- p.350 / Chapter B 64.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP 14) using Ml3 forward (-20) primer --- p.351 / Chapter B 64.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse catalase by BLAST searching against the National Center for Biotechnology Information database --- p.351 / Chapter B 64.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse catalase --- p.351 / Chapter B 65.1: --- DNA sequence ofcDNA subclone AJ9#1 (AP6 & ARP14) using Ml3 reverse primer --- p.352 / Chapter B 65.2: --- Sequencing alignment of cDNA subclone AJ9#1 with mouse suppressor of actin mutations (SAC1 gene) by BLAST searching against the National Center for Biotechnology Information database --- p.352 / Chapter B 65.3: --- Summary of sequence alignment of cDNA subclone AJ9#1 with mouse SAC1 --- p.352 / Chapter B 66.1: --- DNA sequence ofcDNA subclone AL2#8 (AP7 & ARP15) using M13 forward (-20) primer --- p.353 / Chapter B 66.2: --- Sequencing alignment of cDNA subclone AL2#8 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pil) by BLAST searching against the National Center for Biotechnology Information database --- p.353 / Chapter B 66.3: --- Summary of sequence alignment of cDNA subclone AL2#8 with mouse HSD17β11 --- p.353 / Chapter B 67.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using Ml3 forward (-20) primer --- p.354 / Chapter B 67.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxy steroid (17-beta) dehydrogenase 11 (Hsdl7pll) by BLAST searching against the National Center for Biotechnology Information database --- p.354 / Chapter B 67.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.354 / Chapter B 68.1: --- DNA sequence of cDNA subclone AL3#3 (AP7& ARP 15) using M13 reverse primer --- p.355 / Chapter B 68.2: --- Sequencing alignment of cDNA subclone AL3#3 with mouse hydroxysteroid (17-beta) dehydrogenase 11 (Hsdl7β1l) by BLAST searching against the National Center for Biotechnology Information database --- p.355 / Chapter B 68.3: --- Summary of sequence alignment of cDNA subclone AL3#3 with mouse HSD17β11 --- p.355 / Chapter B 69.1: --- DNA sequence of cDNA subclone AO1#2 (AP5 & ARP 10) 356 using Ml3 forward (-20) primer --- p.356 / Chapter B 69.2: --- Sequencing alignment of cDNA subclone AO1#2 with mouse 356 adipose differentiation related protein (ADFP) by BLAST searching against the National Center for Biotechnology Information database --- p.356 / Chapter B 69.3: --- Summary of sequence alignment of cDNA subclone AO1 #2 with 356 mouse ADFP --- p.356 / Chapter B 70.1: --- DNA sequence ofcDNA subclone AO1#5 (AP5 & ARP10) 357 using M13 reverse primer --- p.357 / Chapter B 70.2: --- Sequencing alignment of cDNA subclone AO1#5 with mouse 357 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.357 / Chapter B 70.3: --- Summary of sequence alignment of cDNA subclone AO1 #5 with 357 mouse Crot --- p.357 / Chapter B 71.1: --- DNA sequence ofcDNA subclone AO2#6 (AP5 & ARP10) 358 using Ml3 forward (-20) primer --- p.358 / Chapter B 71.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 358 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.358 / Chapter B 71.3: --- Summary of sequence alignment of cDNA subclone AO2#6 358 with mouse Rnase4 --- p.358 / Chapter B 72.1: --- DNA sequence of cDNA subclone AO2#6 (AP5 & ARP 10) 359 using Ml3 reverse primer --- p.359 / Chapter B 72.2: --- Sequencing alignment of cDNA subclone A02#6 with mouse 359 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.359 / Chapter B 72.3: --- Summary of sequence alignment of cDNA subclone A02#6 359 with mouse Rnase4 --- p.359 / Chapter B 73.1: --- DNA sequence ofcDNA subclone AO2#8 (AP5 & ARP10) 360 using Ml3 reverse primer --- p.360 / Chapter B 73.2: --- Sequencing alignment of cDNA subclone A02#8 with mouse 360 carnitine O-octanoyltransferase (Crot) by BLAST searching against the National Center for Biotechnology Information database --- p.360 / Chapter B 73.3: --- Summary of sequence alignment of cDNA subclone AO2#8 with 360 mouse Crot --- p.360 / Chapter B 74.1: --- DNA sequence ofcDNA subclone AO8#2 (AP5 & ARP10) 361 using M13 forward (-20) primer --- p.361 / Chapter B 74.2: --- Sequencing alignment of cDNA subclone A08#2 with mouse 361 RNase A family 4 (Rnase4) by BLAST searching against the National Center for Biotechnology Information database --- p.361 / Chapter B 74.3: --- Summary of sequence alignment of cDNA subclone AO8#2 with 361 mouse Rnase4 --- p.361 / Chapter B 75.1: --- DNA sequence of cDNA subclone AP4#4 (AP12 & ARP2) 362 using Ml3 forward (-20) primer --- p.362 / Chapter B 75.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 362 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.362 / Chapter B 75.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 362 mouse mitochondrion --- p.362 / Chapter B 76.1: --- DNA sequence ofcDNA subclone AP4#4 (AP12 & ARP2) 363 using Ml3 reverse primer --- p.363 / Chapter B 76.2: --- Sequencing alignment of cDNA subclone AP4#4 with mouse 363 mitochondrion by BLAST searching against the National Center for Biotechnology Information database --- p.363 / Chapter B 76.3: --- Summary of sequence alignment of cDNA subclone AP4#4 with 363 mouse mitochondrion --- p.363
8

Relationship between hepatitis B virus X protein and hypoxia-inducible factors and the therapeutic targets of sorafenib. / CUHK electronic theses & dissertations collection

January 2012 (has links)
慢性乙型肝炎病毒(HBV)感染是肝癌發生的重要因素,其中乙肝病毒X蛋白(HBx)在這一過程起著關鍵作用。研究發現,一些HBV變體和HBx突變具有更高致癌風險,而且這些變體和突變存在地區差異。香港是HBV感染高發地帶,因此本研究目的是從這一地區120個肝癌組織標本中篩查出HBx突變位點。我們用巢式PCR從84.16% (101/120)的標本中提取和擴增了HBx,並進行基因測序。三種HBx突變被檢測出,包括點突變,遠端羧基端截斷和缺失突變。其中點突變位點有39個,特別的是在50%的標本中檢測出A1630G/G1721A 和 A1762T/G1764A雙突變。在31.68% (32/101)的標本中發現遠端羧基端截斷,以及在2.97% (3/101)的標本中檢測出缺失突變。總之,大多數突變集中在HBx轉錄啟動域,表明這些突變在肝癌發生中可能起著重要作用。 / 缺氧誘導因數-1α(HIF-1α)在肝癌的發生和發展中也起著重要作用。研究發現,野生型HBx可以啟動HIF-1α,但是變異型HBx和HIF-1α的關係還沒有研究清楚。我們研究表明HBx轉錄啟動域是必需而且足夠啟動HIF-1α的。在這個區域的突變中,雙突變K130M/V131Z增強HBx對HIF-1α的活性,但遠端羧基端截斷和缺失突變削弱其功能。進一步研究發現,羧基端特別是119-140氨基酸對HBx的穩定和功能非常重要。肝癌標本中,我們也發現HBx和HIF-1α的表達呈正相關。因此,雖然不同的突變對於HBx的功能有不同的影響,但總的來說這些突變可以促進HIF-1α的表達和啟動,進而導致肝癌患者的預後不良。 / 靶向治療在肝癌綜合治療中扮演重要角色。索拉菲尼(Sorafenib)是一種多激酶抑制劑,臨床實驗發現它對晚期肝癌治療有效,但其抑制腫瘤血管生成機制還不完全清楚。我們研究發現Sorafenib明顯而且劑量依賴性地降低HIF-1α的表達和活化,進而抑制血管內皮生長因數(VEGF)的表達。Sorafenib抑制mTOR, ERK, p70S6K, RP-S6, eIF4E和4E-BP1等翻譯起始因數的磷酸化,從而抑制HIF-1α的合成而不影響其降解。體外實驗進一步發現Sorafenib降低HIF-1α和VEGF的表達,從而抑制腫瘤的血管形成和生長。總之,我們的研究表明sorafenib可能通過阻斷mTOR/p70S6K/4E-BP1 和 ERK 信號通路來抑制HIF-1α的合成,從而發揮其抗腫瘤血管生成作用。 / Chronic HBV infection is the leading cause of hepatocellular carcinoma (HCC) and HBx plays a crucial role in the molecular pathogenesis of HBV-related HCC. Previous investigations have indicated that some variations of HBV or mutations of HBx are associated with higher risk of HCC development, whereas the mutations profiles may be disparate in different regions. In the present studies, we thus aim to screen and identify the HBx mutation hotspots in 120 HCC tissues from Hong Kong, a region with HBV hyper-endemic. HBV DNAs were successfully isolated and amplified in 84.16% (101/120) HCC specimens via nest-PCR, and then subjected to gene sequencing. Three types of HBx mutations, including point mutations, distal carboxyl-terminal truncations and deletion mutations, were discovered. Among the point mutations, 39 mutation hotspots were indentified, with two double mutations (A1630G/G1721A and A1762T/G1764A) occurring in approximate 50% of 101 HCC cases. Distal C-terminal truncated mutations were discovered in 31.68% (32/101) of HCC cases, whereas deletion mutations were detected in 2.97% (3/101) of them. Overall, majority of identified mutations were located at the transactivation domain of HBx, suggesting the crucial roles of these mutations in HCC development. / Hypoxia-inducible factor-1α (HIF-1α) also closely involves in the development and progression of HCC. Wild-type HBx has been shown to activate HIF-1α. But the relationship between HBx mutants and activation of HIF-1α has not been fully elucidated. We here revealed that the transactivaiton domain of HBx was necessary and sufficient to activate HIF-1α. Double mutations K130M/V131Z in this domain enhanced the functionality of HBx in upregulating the expression and the activation of HIF-1α, whereas C-terminal truncations and deletion mutations weakened this prosperity of HBx. We further uncovered that the C-terminus, especially the region of amino acids 119-140, was essential for the stability and transactivation of HBx. The positive association between the HBx mutants and HIF-1α was found in the HCC tissue samples. Therefore, although mutations exerted different effects on the functionality of HBx, the overall activity of HBx mutants was suggested to upregulate HIF-1α, whose level is related to poor prognosis of HCC patients. / The therapy targeting a critical molecule in the development of HCC such as HIF-1α may be a potential and effective treatment regimen for HCC patients. Sorafenib, a multikinase inhibitor, has demonstrated promising results for the treatment of advanced HCC in clinical trials, but the mechanism that accounts for the anti-angiogenic efficiency of this agent has not been fully elucidated. We here revealed that sorafenib remarkably and dose-dependently decreased the expression and the transcriptional activity of HIF-1α, and its target gene, vascular endothelial grow factor (VEGF). Further analysis revealed that this reduction of HIF-1α by sorafenib was caused by the inhibition of HIF-1α protein synthesis rather than by the promotion of HIF-1α protein degradation. Moreover, the phosphorylated levels of mTOR, ERK, p70S6K, RP-S6, eIF4E and 4E-BP1 were significantly suppressed by sorafenib. In vivo studies further confirmed the inhibitory effect of sorafenib on the expression of HIF-1α and VEGF proteins, leading to a decrease of tumor vascularisation and growth. Collectively, our data suggest that sorafenib may exhibit anti-angiogenic activity by inhibiting HIF-1α synthesis, which is likely to be achieved through suppressing the phosphorylation of mTOR/p70S6K/4E-BP1 and ERK. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Liping. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 133-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.I / 摘要 --- p.IV / Publications --- p.VI / Acknowledgements --- p.VII / Abbreviations --- p.IX / List of Figures --- p.XI / List of Tables --- p.XIII / Table of Contents --- p.XIV / Chapter Chapter I --- General Introduction --- p.1 / Chapter 1.1 --- Overview of Hepatocellular Carcinoma --- p.1 / Chapter 1.2 --- HBV Infection and HCC Development --- p.6 / Chapter 1.3 --- Overview on Hepatitis B virus X Protein --- p.10 / Chapter 1.4 --- Roles of Hypoxia-inducible Factors in HCC --- p.17 / Chapter 1.5 --- Targeted Therapies and Sorafenib --- p.27 / Chapter Chapter II --- Identification of HBx Mutation Hotspots in HCC Tissues --- p.31 / Chapter 2.1 --- Abstract --- p.31 / Chapter 2.2 --- Introduction --- p.32 / Chapter 2.3 --- Materials and Methods --- p.35 / Chapter 2.4 --- Results --- p.40 / Chapter 2.5 --- Discussion --- p.53 / Chapter Chapter III --- The Relationship between HBx Mutants and HIF-1α --- p.59 / Chapter 3.1 --- Abstract --- p.59 / Chapter 3.2 --- Introduction --- p.60 / Chapter 3.3 --- Materials and Methods --- p.63 / Chapter 3.4 --- Results --- p.70 / Chapter 3.5 --- Discussion --- p.91 / Chapter Chapter IV --- The Effects of Sorafenib on Hypoxia-inducible Factor-1α --- p.96 / Chapter 4.1 --- Abstract --- p.96 / Chapter 4.2 --- Introduction --- p.98 / Chapter 4.3 --- Materials and Methods --- p.101 / Chapter 4.4 --- Results --- p.108 / Chapter 4.5 --- Discussion --- p.124 / Chapter Chapter V --- Conclusion and Future Plans --- p.129 / Chapter 5.1 --- Conclusion --- p.129 / Chapter 5.2 --- Future Plans --- p.131 / References --- p.133
9

Functional characterization of a Krüppel zinc finger protein- zinc finger protein 146. / CUHK electronic theses & dissertations collection

January 2008 (has links)
By means of reverse-transcription polymerase chain reaction, overexpression of ZNF146 was detected in two human HCC cell lines HepG2 and Hep3B and a clear relationship between HCC and overexpression of ZNF146 has been established. Subcellular localization of ZNF146 protein in liver cells was studied by generation and expression of a green fluorescent protein (GFP) fusion protein. The nuclear localization and the reported DNA binding ability of ZNF146 protein provided a hint that ZNF146 may carry out its function in the cell system by interacting with specific genomic DNA sequences. Recombinant ZNF146 protein was expressed using bacterial and yeast system for the genomic DNA pull down assay in the identification of potential interacting genomic DNA sequences. Several potential genomic DNA sequences that interact with ZNF146 were identified and the gene MDM2 is the one of the candidates that is directly related to human carcinogenesis. MDM2 is a negative regulator of the tumor suppresser protein p53. Deregulation of MDM2 will impair the cell's ability in cell cycle arrest, DNA repair and apoptosis upon induced DNA damage. / Hepatocellular carcinoma (HCC) is a type of primary malignant liver tumor. And is one of the most frequent malignancies worldwide. The focus of this research project is the characterization of a Kruppel zinc finger protein, zinc Finger Protein 146 (ZNF146) using HCC as a disease model. The aim of this project is to understand the functional role ZNF146 and try to explore the mechanism of how ZNF146 might be involved in the carcinogenesis of HCC. / In order to have a better understanding with the protein ZNF146, SUMOylation properties of this protein has been studied. SUMO1 modification on ZNF146 has already been reported. And in our study, experimental result demonstrated that ZNF146 is also modified by SUMO2 and SUMO3 in liver cells. Other than the SUMOylation sites for SUMO1 protein which has been reported, modification sites for SUMO2 at the K247 and K275 positions were mapped, while K191R, K219R, K247R, K256R and K275R, five positions were mapped for SUMO3 modification. A more complete picture of the SUMOylation properties of ZNF146 has been revealed. Since we hypothesized that ZNF146 is related to the p53 tumor suppressor, cell cycle control and DNA repair pathway, a cell cycle study using flow cytometry was performed for the investigation of the effect on cell cycle regulation by ZNF146 overexpression. In our study, ZNF146 overexpression promoted the G1/S transition in the cell division cycle, which indicated that liver cells were more active for the progression of cell cycle. / On the other hand, using cDNA microarray technology expression profiles of ZNF146 overexpressing and non-overexpressing liver cell lines were compared and with real-time polymerase chain reaction, six candidate genes CRLF1, IFI44, ST6GAL1, LOC441601, IL18 and RAD17 were confirmed with their deregulation induced by the overexpression of ZNF146. Four of the candidates, IFI44, LOC441601, IL18 and RAD17 were found to be related to the p53 tumor suppressor activity or DNA damage, repair response and control. This observation, together with the result of genomic DNA pull down assay, gives us a hint that ZNF146 is possibly involved in liver carcinogenesis by affecting DNA repair and cell cycle control upon induced DNA damage. / The gene ZNF146 codes for a member of the Kruppel zinc finger proteins, however ZNF146 protein is different from most members of the Kruppel zinc finger proteins subfamily. It encodes a 33 kDa protein solely composed of 10 zinc finger motifs and is devoid of any non-zinc finger regulatory domain for interactions with other proteins. ZNF146 overexpression has been reported in a number of cancers including colon cancer and pancreatic carcinoma. However, the functional role of ZNF146 overexpression in tumorigenesis is yet to be solved and not much research on how ZNF146 might be invovled in the establishment of HCC was published. / To conclude, the experimental results of this study support the hypothesis that ZNF146 overexpression may deregulating the cell division cycle and some genes differentially regulated upon over-expression of ZNF146 are related to the regulations of DNA damage response. Future research on ZNF146 can be focused on the detail regulatory pathway of ZNF146 overexpression and its interaction between the p53 tumor suppressor, DNA damage response and cell cycle regulation, and a fuller picture of how ZNF146 overexpression might induce hepatocarcinogenesis can be revealed. / Yeung, Tsz Lun. / Adviser: Miu Yee (Mary) Waye. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3329. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 287-304). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Page generated in 0.0943 seconds