Spelling suggestions: "subject:"logarithmic forma"" "subject:"1ogarithmic forma""
1 |
Singularités libres, formes et résidus logarithmiques / Free singularities, logarithmic forms and residuesPol, Delphine 08 December 2016 (has links)
La théorie des champs de vecteurs logarithmiques et des formes différentielles logarithmiques d’une hypersurface singulière réduite est développée par K.Saito. Ces notions apparaissent dans l’étude de la connexion de Gauss-Manin de certaines familles de singularités et de leur déploiement semi-universel.Lorsque le module des champs de vecteurs logarithmiques est libre, l’hypersurface est appelée diviseur libre. A.G. Aleksandrov et A. Tsikh généralisent les notions de formes différentielles logarithmiques et de résidus logarithmiques aux intersections complètes et aux espaces de Cohen-Macaulay réduits.Nous étudions dans ce travail les formes différentielles logarithmiques d’un espace singulier réduit de codimension quelconque plongé dans une variété lisse, et nous développons une notion de singularités libres qui étend la notion de diviseurs libres. Les résidus des formes différentielles logarithmiques d’une hypersurface ainsi que leur généralisation aux espaces de codimension supérieure interviennent de façon cruciale dans ce travail de thèse. Notre premier objectif est de donner des caractérisations de la liberté pour les intersections complètes et les espaces de Cohen-Macaulay qui généralisent le cas des hypersurfaces. Nous accordons ensuite une attention particulière à une famille de singularités libres, à savoir les courbes, pour lesquelles nous décrivons le module des résidus logarithmiques en termes de multi-valuations. / The theory of logarithmic vector fields and logarithmic differential forms along a reduced singular hypersurface is developed by K. Saito. These notions appear in the study of the Gauss-Manin connection of some families of singularities and their semi-universal unfolding. If the module of logarithmic vector fields is free, the hypersurface is called a free divisor. A.G. Aleksandrov and A. Tsikh generalize the notions of logarithmic differential forms and logarithmic residues to reduced complete intersections and Cohen-Macaulay spaces. In this work, we study the logarithmic differential forms of a reduced singular space of any codimension embedded in a smooth manifold, and we develop a notion of free singularity which extend the notion of free divisor. The residues of logarithmic differential forms as well as theirgeneralization to higher codimension spaces are crucial in this thesis. Our first purpose is to give characterizations of freeness for complete intersections and Cohen-Macaulay spaces which generalize the case of hypersurfaces. We then give a particular attention to a family of free singularities, namely the curves, for which we describe the module of logarithmic residues thanks to their set of values.
|
2 |
Invariants algébriques et topologiques des courbes et surfaces à singularités quotient / Algebraic and Topological Invariants of Curves and Surfaces with Quotient SingularitiesOrtigas Galindo, Jorge 03 July 2013 (has links)
Le but principal de cette thèse de doctorat est l'étude de l'anneau de cohomologie du complément d'une courbe algébrique réduite dans le plan projectif pondéré complexe dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie. Pour atteindre notre objectif, il est nécessaire de développer une théorie algébrique des courbes sur des surfaces avec des singularités quotient et d'étudier des techniques pour calculer certains invariants particulièrement utiles à travers des Q-résolutions plongées. / The main goal of this PhD thesis is the study of the cohomology ring of the complement of a reduced algebraic curve in the complex weighted projective plane whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes. In order to achieve our purpose one needs to develop an algebraic theory of curves on surfaces with quotient singularities and study techniques to compute some particularly useful invariants by means of embedded Q-resolutions.
|
Page generated in 0.0665 seconds