• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 21
  • 13
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hyperspectral interferometry for single-shot profilometry and depth-resolved displacement field measurement

Widjanarko, Taufiq January 2011 (has links)
A new approach to the absolute measurement of two-dimensional optical path differences is presented in this thesis. The method, which incorporates a white light interferometer and a hyperspectral imaging system, is referred to as Hyperspectral Interferometry. A prototype of the Hyperspectral Interferometry (HSI) system has been designed, constructed and tested for two types of measurement: for surface profilometry and for depth-resolved displacement measurement, both of which have been implemented so as to achieve single shot data acquisition. The prototype has been shown to be capable of performing a single-shot 3-D shape measurement of an optically-flat step-height sample, with less than 5% difference from the result obtained by a standard optical (microscope) based method. The HSI prototype has been demonstrated to be able to perform single-shot measurement with an unambiguous 352 (m depth range and a rms measurement error of around 80 nm. The prototype has also been tested to perform measurements on optically rough surfaces. The rms error of these measurements was found to increase to around 4× that of the smooth surface. For the depth-resolved displacement field measurements, an experimental setup was designed and constructed in which a weakly-scattering sample underwent simple compression with a PZT actuator. Depth-resolved displacement fields were reconstructed from pairs of hyperspectral interferograms. However, the experimental results did not show the expected result of linear phase variation with depth. Analysis of several possible causes has been carried out with the most plausible reasons being excessive scattering particle density inside the sample and the possibility of insignificant deformation of the sample due to insufficient physical contact between the transducer and the sample.
22

Analýza a ověření metody měření indexu lomu vzduchu pro laserovou interferometrii / Analysis and verification of air refractive index measurement method for laser interferometry

Pikálek, Tomáš January 2016 (has links)
This thesis deals with a theoretical analysis and experimental verification of a new method for the refractive index of air measurement. This method uses a combination of laser and low-coherence interferometry. The experimental setup is based on the Michelson interferometer equipped with a double-spaced glass cell. The optical path difference between the inner and outer part of the cell that is proportional to air refractivity is estimated using two low-coherence interference signals. These signals are analysed in the frequency domain which results in the dependence of the phase change caused the by air on vacuum wavelength. This dependency is fitted by a theoretical function based on Edlén's equations in order to calculate the phase difference for laser wavelength. This value is then made more accurate utilising two laser interference signals and used for the air refractive index calculation. The new method was experimentally verified and compared to two different techniques. Moreover, the measurement uncertainty was evaluated.
23

Développement de systèmes de contrôle in situ des propriétés optiques de filtres interférentiels / Development of in situ optical monitoring systems of optical interferential filters properties

Nadji, Séverin Landry 29 May 2018 (has links)
La réalisation de fonctions de filtrage complexes nécessite une parfaite maîtrise du processus de dépôt ainsi qu’un contrôle précis et en temps réel de l’épaisseur optique des couches déposées. Au cours de ma thèse, consacrée au développement de nouvelles modalités de contrôle optique in situ, je me suis particulièrement intéressé à deux sujets différents, à savoir : - D’une part, la détermination de la dépendance spectrale des constantes optiques (indice de réfraction et coefficient d’extinction) de matériaux diélectriques. Un moyen possible pour effectuer cette détermination consiste à utiliser un système de contrôle optique large bande afin d’enregistrer les spectres de transmission de l’empilement au fur et à mesure de sa formation. En effet, l’évolution temporelle, à chaque longueur d’onde, de ces spectres de transmission contient des informations quantitatives liées aux constantes optiques que nous souhaitons déterminer. - D’autre part, la mesure en temps réel du coefficient de réflexion (r) d’un empilement, en amplitude et en phase, lors de son dépôt. En effet, les méthodes de contrôles optiques en intensité présentent des limitations que la connaissance de l’information de phase devrait permettre de contourner. Cette mesure est réalisée par interférométrie holographique digitale à faible cohérence sur un substrat éclairé par sa face arrière et dont la face avant est équipée d’un masque annulaire. Ceci donne accès aux information de phase et d’amplitude recherchées tout en s’affranchissant des vibrations générées par le fonctionnement de la machine de dépôt ainsi que du mouvement de rotation à 120 tours par minute qu’effectue le porte-substrat. / The realization of complex filtering functions requires a perfect mastering of the deposition process as well as an accurate real time monitoring of the optical thickness of the deposited layers. During my PhD thesis, devoted to the development of new methods of in situ optical monitoring, I was particularly interested in two different subjects, namely:- On the one hand, the determination of the spectral dependence of optical constants (refractive index and extinction coefficient) of dielectric materials. A possible way to achieve this determination consist in using a broadband optical monitoring system in order to record the transmission spectra, in real time, of the stack during its formation. Indeed, the temporal evolution, at each wavelength, of these transmission spectra provide quantitative information related to the optical constants that we wish to determine.- On the other hand, the real time measurement of the reflection coefficient (r) of a stack, in amplitude and phase, during its deposition. Indeed, the optical monitoring methods based on intensity proprieties present some limitations that the knowledge of phase information should overcome. This measurement is performed by low coherence digital holographic interferometry on a substrate illuminated by its rear face and whose front face is equipped with an annular mask. This gives access to desired phase and amplitude information while avoiding the parasitic influence of the substrate motions induced by the vibrations of the deposition machine, and the rotation of the substrate holder at 120 rounds per minute.
24

Measurement of surface topographies in the nm-range for power chip technologies by a modified low-coherence interferometer

Taudt, Ch., Baselt, T., Nelsen, B., Aßmann, H., Greiner, A., Koch, E., Hartmann, P. 29 August 2019 (has links)
This work introduces a modified low-coherence interferometry approach for nanometer surface-profilometry. The key component of the interferometer is an element with known dispersion which defines the measurement range as well as the resolution. This dispersive element delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In the chosen setup, both axial resolution and measurement range are tunable by the choice of the dispersive element. The basic working principle was demonstrated by a laboratory setup equipped with a supercontinuum light source (Δλ = 400 ̶ 1700 nm). Initial experiments were carried out to characterize steps of 101 nm on a silicon height standard. The results showed that the system delivers an accuracy of about 11.8 nm. These measurements also served as a calibration for the second set of measurements. The second experiment consisted of the measurement of the bevel of a silicon wafer. The modified low-coherence interferometer could be utilized to reproduce the slope on the edge within the previously estimated accuracy. The main advantage of the proposed measurement approach is the possibility to collect data without the need for mechanically moving parts.
25

Two-dimensional low-coherence interferometry for the characterization of nanometer wafer topographies

Taudt, Ch., Baselt, T., Nelsen, B., Aßmann, H., Greiner, A., Koch, E., Hartmann, P. 30 August 2019 (has links)
Within this work a scan-free, low-coherence interferometry approach for surface profilometry with nm-precision is presented. The basic setup consist of a Michelson-type interferometer which is powered by a supercontinuum light-source (Δλ = 400 - 1700 nm). The introduction of an element with known dispersion delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In order to enable scan-free measurements, the interference signal is spectrally decomposed with a grating and imaged onto a two-dimensional detector. One dimension of this detector records spectral, and therefore height information, while the other dimension stores the spatial position of the corresponding height values. In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 µm with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.
26

Mikroskopie časově proměnných biologických objektů / Microscopy of Time Variable Biologic Objects

Uhlířová, Hana January 2010 (has links)
The subject of the PhD thesis is the application of a transmission digital holographic microscope (DHM) which was designed and constructed in the Laboratory of optical microscopy at the IPE BUT for the research of live cells dynamics. First part of the work is concerned with theoretical description of the microscope imaging properties dependent on the coherence of illumination. It is supplemented with experiments of imaging of a model and a real biological specimen. The following part describes construction modifications and innovations of the microscope and its equipment that enabled the utilization of the microscope for live cells observations. In the experimental part the methodology of live cells preparation and DHM imaging was worked out. The methodology was verified by the observation of cell dynamics during an apoptosis induced by the cytostaticum cis-platinum. Further experiments examined the dynamics of live cells in standard conditions and during a deprivation stimulus. A novel method of holographically reconstructed phase, named \uva{dynamic phase differences}, was set up to evaluate quantitative changes of cell mass distribution during the experiments. Depending on the degree of malignancy and density of cell outgrowth, various schemes of cancer cells behaviour during a specific reaction were revealed using this method. For the quantitative analysis of the DHM phase imaging, a suitable statistical characteristic and an interpretation of the measured data were proposed. Both of them were successfully applied for the comparison of cell motility of two cell types: parental and progeny cell lines. On the basis of the proposed processing, hypotheses describing the reaction mechanism of tumour cells to stress life conditions were established. In the conclusions we summarize our findings and suggestions for the construction and the applications of a new generation of the transmission DHM.
27

Koherencí řízená holografická mikroskopie v opticky rozptylujících prostředích / COHERENCE-CONTROLLED HOLOGRAPHIC MICROSCOPY IN DIFFUSE MEDIA

Lošťák, Martin January 2015 (has links)
This thesis deals with imaging through diffuse media in coherence-controlled holographic microscope (CCHM) developed in IPE FME BUT. The mutual coherence function as well as the signal dependence on the lateral mutual shift between both arms of the CCHM are calculated. Both functions are related to each other. The latter dependence is measured experimentally. A principle of imaging with CCHM through diffuse media with both ballistic and diffuse light is explained by a simple geometrical model. This model is then verified experimentally by imaging a sample through diffuse medium. The point spread function (PSF) of CCHM for imaging through diffuse media is then calculated. Results of PSF calculation are proved experimentally.

Page generated in 0.07 seconds