Spelling suggestions: "subject:"métalloenzymes artificielle"" "subject:"métalloenzymes artificiell""
1 |
De nouveaux biocatalyseurs hétérogènes pour des réactions d'oxydation : des cristaux de métalloenzymes artificielles / New heterogeneous biocatalysts for oxidation reactions : crystals of artificial metalloenzymesLopez, Sarah 12 October 2018 (has links)
Depuis la révolution industrielle, la chimie ne cesse de prospérer en développant des procédés de plus en plus performants souvent aux dépens de l’environnement. Dans le cadre du développement d’une chimie durable, des procédés catalytiques dans le domaine de la chimie d’oxydation sont mis en place en utilisant des métaux physiologiques et des oxydants doux. En combinant les avantages de la catalyse homogène et de la biocatalyse, de nouveaux catalyseurs bio-inspirés ont émergé, les métalloenzymes artificielles. Elles sont constituées d’un complexe inorganique, choisi en fonction de la réaction visée, qui est ancré au sein d’une protéine, qui apporte la sélectivité de la réaction. Au cours des travaux de cette thèse, de nouvelles métalloenzymes artificielles ont été créées par ancrage de divers complexes de Fe ou de Ru au sein de la protéine NikA. Dans un premier temps, l’hybride NikA/Ru-bpza a été synthétisé pour réaliser l’hydroxychloration d’alcènes en présence d’un iode hypervalent. Bien que d’excellentes propriétés catalytiques aient été obtenues, l’amélioration de la stabilité de ce type de catalyseurs, en particulier pour des réactions d’oxydation, reste un challenge important à relever pour leur utilisation au niveau industriel. Une des solutions originale est basée sur le développement de la catalyse hétérogène, en utilisant de cristaux de métalloenzymes artificielles grâce à la technologie CLEC (Cross-Linked Enzyme Crystals). Cette technologie permet, d’une part, d’améliorer la stabilité et la recyclabilité des catalyseurs, et d’autre part, d’élargir les conditions réactionnelles utilisées (solvants, pH, températures). Trois réactivités ont été développées à base de CLEC NikA/FeL : (i) la sulfoxydation de thioéthers, (ii) l’hydroxychloration d’alcènes en présence d’Oxone® et de chlore et (iii) la coupure oxydante d’alcènes par activation d’O2. Ces résultats ont permis d’explorer de nouvelles réactivités en chimie cascade soit en combinant les CLEC mis au point, soit en combinant différents catalyseurs homogènes. / Since the industrial revolution, chemistry has continually thriven by developing new efficient processes at the expense of the environment. As an example, oxidation reactions are performed under harsh conditions with the use of toxic oxidants. With the emergence of green chemistry, catalytic processes using physiological metals and soft oxidants are privileged. Combining the advantages of biocatalysis and homogeneous catalysis, the design of novel bioinspired catalysts, consisting on the synthesis of artificial enzymes has recently emerged. These hybrids are composed of an inorganic complex, driving the reactivity of the enzyme, inserted into a protein, which drives the reaction selectivity. The thesis described new developments in original artificial metalloenzymes, based on the use of the NikA protein and Fe or Ru catalysts. First, a new hybrid has been developed by anchoring the Ru-bpza complex to NikA to catalyze alkene hydroxychloration with hypervalent iodine. Although excellent catalytic efficiencies were obtained, the stability improvement remains a major challenge for the industrial use of these catalytic processes, especially when oxidation chemistry is concerned. One possible strategy is based on the development of heterogeneous catalysis, by using a crystal/solution version of the artificial metalloenzymes thank to the cross-linked enzyme crystals (CLEC) technology. On the one hand, this technology allows to increase the stability and the recyclability of the catalysts. On the other hand, catalysis can be performed under a various reactions conditions (organic solvent, temperature, pH). Three reactivities have been developed with NikA/FeL-CLEC catalysts: (i) thioether sulfoxidation with NaOCl, (ii) alkene hydroxychloration with Oxone® and chloride source and (iii) oxidative cleavage of alkenes by O2 activation. To go further, new reactivities in cascade reactions have been explored combining either NikA-based CLEC developed, or different homogenous catalysts.
|
2 |
Etude structurale et fonctionnelle de la protéine à radical SAM Hyde / Structural and functional study of the proteins involved in the biosynthesis and insertion of the active site of FeFe-hydrogenasesRohac, Roman 18 May 2016 (has links)
Les protéines à radical S-adénosyl-L-méthionine (SAM) utilisent un centre [Fe4S4] réduit pour initier le clivage réductive homolytique de la SAM et la formation d'une espèce hautement réactive - le radical 5'-déoxyadénosyl ou 5'-dA•. Dans la quasi-totalité de cas ce radical alkyl va arracher un atome d'hydrogène sur le substrat et déclencher ainsi sa conversion en produit. On trouve ces enzymes au niveau d'étapes clé de la synthèse de certaines vitamines, antibiotiques, précurseurs de l'ADN ou encore cofacteurs protéiques où elles sont souvent impliquées dans le clivage ou la formation des liaisons C-C, C-N, C-S ou encore C-P. Les travaux réalisés au cours de cette thèse ont été focalisés sur l'étude structurale et fonctionnelle de la protéine HydE ; une enzyme à radical SAM, qui intervient dans la biosynthèse du site actif organométallique de l'hydrogénase à [FeFe]. L'objectif principal était d'identifier le substrat de HydE et d'étudier les détails du fonctionnement d'une protéine à radical SAM. Nous avons réussi à identifier un groupe de molécules, dérivées de la cystéine, contentant un cycle thiazolidine avec un ou deux groupements carboxylates, qui ont une très bonne affinité pour le site actif de HydE. Certains de ces ligands se sont montrés d’être des substrats non physiologiques de l’enzyme. Grâce à ces substrats nous avons pu mettre en évidence un nouveau mécanisme d’attaque radicalaire dans les protéines à radical SAM. En effet, dans HydE nous avons observé une attaque directe du radical 5'-dA• sur l’atome soufre du thioéther appartenant au cycle thiazolidine. Cette réaction constitue un exemple pas comme les autres d’une insertion d’un atome de soufre (ou de sélénium) catalysée par une enzyme à radical SAM. Il s'agit également d'une première observation d'une réaction radicalaire dans les cristaux protéiques d'une enzyme à radical SAM et également un premier suivi en temps réel par la RMN du 13C et 1H de l'accumulation d'un des produits de la réaction catalysée par ces enzymes. Les résultats de calculs théoriques basés sur nos structures cristallographiques de haute résolution suggèrent que dans le cas de cette superfamille de protéines le radical 5'-dA• serait plutôt un état de transition et donc pas une espèce intermédiaire isolable. / Radical S-adenosyl-L-methionine (SAM) proteins use a reduced [Fe4S4] cluster to initiate homolytic reductive cleavage of SAM, which leads to the formation of highly reactive 5'-deoxyadenosyl radical species or 5'-dA•. In almost all cases this alkyl radical will abstract a hydrogen atom from the substrate and thus trigger its conversion into product. These enzymes are found in key steps of the synthesis of certain vitamins, antibiotics, DNA precursors or protein cofactors. They are often involved in the cleavage or formation of C-C, C-N, C-S or C-P bonds. The present thesis work has been focused on the structural and functional study of HydE protein; a radical SAM enzyme, involved in the biosynthesis of the organometallic active site of [FeFe]-hydrogenase. The main goal was to identify the substrate of HydE and to study details of how radical SAM proteins control the highly oxidizing 5'-dA• species. We managed to identify a group of molecules, derived from cysteine, containing a thiazolidine ring with one or two carboxylate groups, which have a very good affinity for the active site of HydE. We have demonstrated some of these ligands are non-physiological substrates of the enzyme. With these substrates we could highlight a new radical attack mechanism in radical SAM proteins. Indeed, in HydE we observed a direct attack on the 5'-dA • radical on the sulfur atom of the thioether belonging to the thiazolidine ring. This is an unprecedented reaction that contrasts with sulfur (or selenium) atom insertion reactions catalysed by some radical SAM enzymes. This is also the first observation of a radical reaction in the protein crystal of a radical SAM enzyme and also the first real-time monitoring by 1H- & 13C-NMR spectroscopy of the accumulation of products of the reaction catalysed by these enzymes. Theoretical calculations based on our high-resolution crystal structures suggest that in the case of this protein superfamily the 5'-dA• radical, which triggers the reaction in radical SAM enzymes, is a transition state and therefore not an isolable intermediate species.
|
Page generated in 0.3526 seconds