Spelling suggestions: "subject:"_método dde penalidades"" "subject:"_método dde criminalidade""
1 |
Uma adaptação do método barreira penalidade quasi-Newton ao problema de fluxo de potência ótimoCampanha, Paulo Sérgio [UNESP] 17 August 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:34Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-08-17Bitstream added on 2014-06-13T18:49:37Z : No. of bitstreams: 1
campanha_ps_me_bauru.pdf: 713465 bytes, checksum: 80f1a0cfec7a9f0dda4e30ae9f1786ab (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesse trabalho propõe-se uma adaptação do método barreira penalidade quasi-Newton apresentado por P. Armand em 2003, para a resolução do problema do Fluxo de Potência Ótimo (FPO). Este método é denominado de método da função langrangiana barreira penalidade adaptada. Neste método as restrições de desigualdade são transformadas em igualdade pelo uso de variáveis de folga positivas. Estas variáveis são relaxadas, utilizando-se variáveis positivas, as quais, são incorporadas na função objetivo através de um termo de penalização. O novo problema restrito é então transformado em irrestrito associando a uma função lagrangiana às restrições de igualdade e uma função barreira penalidade às restrições de desigualdade. o algoritmo é composto por um ciclo interno e um externo. No ciclo interno é utilizado um método quasi-Newton para o cálculo das direções de busca e é determinado o tamanho do passo. No ciclo externo os parâmetros de barreira e penalidade são atualizados através de regras pré-definidas até que as condições de KKT sejam satisfeitas. Testes computacionais foram realizados utilizando problemas matemáticos e o problema de FPO, os quais demonstram a eficiência da adaptação proposta / This work proposes an adaptation of the quasi-Newton penalty barrier method presented by P. Armand in 2003. for the solution of the Optimal Power Flow (OPD) problem. This method is called method adapted penalty barrier lagrangian function. In this method the inequalities constraint are transformed in equality by adding non-negative slack variable. These variables are relaxed by positive auxiliary variables which are incorporated in the objective function through a penalty term. The new constraint problem is transformed in unconstraint by associating an lagrangian function for handling the equality constraint and an penalty barrier function for treating the inequality constraints. The algorithm is composed by an internal and external cycle. In the interanal cycle is used the quasi-Newton method to determine the search directions and the step size is calculated. In the external cycle the barrier parameters are updated through predefined rules until the KKT conditions are satisfied. Computational tests were accomplished using mathematical problems and the OPF problem which demonstrate the efficiency of the propose adaptation
|
2 |
Analysis of the coupling between penalty method and pressure Poisson equation in convective problems.Fábio Capelassi Gavazzi De Marco 00 December 2003 (has links)
The intent of this work is to analyse by means of numerical experiments the characteristics in terms of performance when the penalty method and the pressure Poisson equation formulation are combined to solve convective problems. Besides that, the penalty method and the pressure Poisson equation formulation are applied independently and compared with the coupled formulation. The three methodologies have been applied on four numerical examples: natural convection in a square cavity with Boussinesq and non-Boussinesq hypothesis, forced convection in a square cavity and flow over a backward step. The attention has been focused on the CPU time consumption, mass conservation and solution's accuracy in comparison with benchmark results. The coupled formulation has shown to be efficient for three problems studied, while the pressure Poisson equation formulation has shown convergence problems for the backward facing step flow. For the penalty method applied on the natural convection problem, the solution has diverged for both, Boussinesq and non-Boussinesq approaches. It has been verified that the penalty parameter affects much more the solution than the pressure weight. The CPU time curve against the penalty parameter variation has shown to have bathtub curve comportment, while the mass conservation error is significantly reduced as the penalty parameter is increased. However, for high penalty parameter values spurious solutions have been found. Additionally to mass conservation error, it is necessary to define an error criterion to check the reliability of the solution.
|
3 |
Uma abordagem primal-dual de reescalamento não-linear integrado para problemas de programação matemática discreta-mista com restrições de equilíbrio e suas aplicações ao problema de fluxo de potência ótimo reativo / A primal-dual integrated nonlinear rescaling approach for mixed-discrete mathematical problems with equilibrium constraints and its application to the reactive optimal power flow problemsPinheiro, Ricardo Bento Nogueira Mori 03 May 2017 (has links)
Neste trabalho propomos uma abordagem computacional especificamente talhada para a solução de problemas de programação matemática discreta-mista com restrições de equilíbrio (MPEC). Para isso, inicialmente, transformamos o MPEC discreto-misto em uma sequência de MPECs contínuos. Na formulação dos MPECs contínuos, inserimos restrições de igualdade e de desigualdades artificias, as quais nos permitem considerar as variáveis discretas como contínuas. Cada MPEC contínuo é transformado em um problema de programação não-linear (PNL) padrão. Isso é feito por meio da reformulação das restrições de complementaridade originais do MPEC contínuo em um conjunto equivalente de restrições usuais de desigualdade. As restrições de igualdade originais do PNL são tratadas por meio da função lagrangiana clássica, as restrições de igualdade artificiais associada às variáveis discretas do PNL são tratadas por meio de uma técnica variante do método de penalidades clássico e as restrições de desigualdade artificias e originais do problema são tratadas por meio do método de reescalamento não-linear integrado proposto neste trabalho. Cada PNL é resolvido por meio de uma abordagem primal-dual do método de reescalamento não-linear integrado (PDRNLI) com atualização dinâmica dos parâmetros e com a estratégia de convergência global proposta. O método PDRNLI é aplicado ao problema de fluxo de potência ótimo reativo com restrições de atuação de dispositivo de controle de tensão associado aos sistemas elétricos IEEE-14, IEEE-30 e IEEE-118 barras. Os resultados numéricos comprovam a eficiência do método PDRNLI proposto para a solução do problema. / In this work we propose a computational approach specifically tailored for solving mixed-discrete mathematical problems with equilibrium constraints (MPEC). For such a purpose, we initially transform the mixed-discrete MPEC problem into a sequence of continuous MPEC problems. In the formulation of the continuous MPECs, we insert artificial equality and inequality constraints, which allow us handling discrete variables as continuous ones. Each continuous MPEC is transformed into a standard nonlinear programming problem (NLP). This is performed by reformulating the original complementarity constraints of the continuous MPEC problems into an equivalent system of standard inequality constraints. The original equality constraints of the NLP problem are handled by means of the classical lagrangian function, while the artificial equality constraints associated with the discrete variables are handled by means of a variant of the classic penalty method. The original and artificial inequality constraints are handled by means of the integrated nonlinear rescaling method proposed in this work. Each NLP is solved by means of a primal-dual version of the integrated nonlinear rescaling approach (PDINLR), with dynamic updating of parameters together with proposed a global convergence strategy. The PDINLR method is applied to the reactive optimal power flow problem with additional constraints associated with the actuation of voltage control devices for the associated with IEEE-14, 30 and 118 bus electrical systems. Numerical results assure the efficiency of the method PDINLR proposed for solving the problem.
|
4 |
Uma abordagem primal-dual de reescalamento não-linear integrado para problemas de programação matemática discreta-mista com restrições de equilíbrio e suas aplicações ao problema de fluxo de potência ótimo reativo / A primal-dual integrated nonlinear rescaling approach for mixed-discrete mathematical problems with equilibrium constraints and its application to the reactive optimal power flow problemsRicardo Bento Nogueira Mori Pinheiro 03 May 2017 (has links)
Neste trabalho propomos uma abordagem computacional especificamente talhada para a solução de problemas de programação matemática discreta-mista com restrições de equilíbrio (MPEC). Para isso, inicialmente, transformamos o MPEC discreto-misto em uma sequência de MPECs contínuos. Na formulação dos MPECs contínuos, inserimos restrições de igualdade e de desigualdades artificias, as quais nos permitem considerar as variáveis discretas como contínuas. Cada MPEC contínuo é transformado em um problema de programação não-linear (PNL) padrão. Isso é feito por meio da reformulação das restrições de complementaridade originais do MPEC contínuo em um conjunto equivalente de restrições usuais de desigualdade. As restrições de igualdade originais do PNL são tratadas por meio da função lagrangiana clássica, as restrições de igualdade artificiais associada às variáveis discretas do PNL são tratadas por meio de uma técnica variante do método de penalidades clássico e as restrições de desigualdade artificias e originais do problema são tratadas por meio do método de reescalamento não-linear integrado proposto neste trabalho. Cada PNL é resolvido por meio de uma abordagem primal-dual do método de reescalamento não-linear integrado (PDRNLI) com atualização dinâmica dos parâmetros e com a estratégia de convergência global proposta. O método PDRNLI é aplicado ao problema de fluxo de potência ótimo reativo com restrições de atuação de dispositivo de controle de tensão associado aos sistemas elétricos IEEE-14, IEEE-30 e IEEE-118 barras. Os resultados numéricos comprovam a eficiência do método PDRNLI proposto para a solução do problema. / In this work we propose a computational approach specifically tailored for solving mixed-discrete mathematical problems with equilibrium constraints (MPEC). For such a purpose, we initially transform the mixed-discrete MPEC problem into a sequence of continuous MPEC problems. In the formulation of the continuous MPECs, we insert artificial equality and inequality constraints, which allow us handling discrete variables as continuous ones. Each continuous MPEC is transformed into a standard nonlinear programming problem (NLP). This is performed by reformulating the original complementarity constraints of the continuous MPEC problems into an equivalent system of standard inequality constraints. The original equality constraints of the NLP problem are handled by means of the classical lagrangian function, while the artificial equality constraints associated with the discrete variables are handled by means of a variant of the classic penalty method. The original and artificial inequality constraints are handled by means of the integrated nonlinear rescaling method proposed in this work. Each NLP is solved by means of a primal-dual version of the integrated nonlinear rescaling approach (PDINLR), with dynamic updating of parameters together with proposed a global convergence strategy. The PDINLR method is applied to the reactive optimal power flow problem with additional constraints associated with the actuation of voltage control devices for the associated with IEEE-14, 30 and 118 bus electrical systems. Numerical results assure the efficiency of the method PDINLR proposed for solving the problem.
|
Page generated in 0.0912 seconds