• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydraulic properties of the vadose zone at two typical sites in the Western Cape for the assessment of groundwater vulnerabilitv to pollution

Samuels, Donovan January 2007 (has links)
>Magister Scientiae - MSc / Aquifer vulnerability assessment is increasingly becoming a very significant basis in order to fulfil the water demands in South Africa. Knowledge of soil hydraulic properties that consists of the soil water retention and hydraulic conductivity functions is a prerequisite for predicting solution transport in soils. The overall objective of the study is to develop a database of hydraulic properties for collected undisturbed samples and to test selected models by making use of this database. Studies of the vadose zone are generally restricted to the top 1.2 meters; therefore this study aims at essentially improving the lack of measurements and modelling in the vadose zone. There exist several methods to determine hydraulic properties of soil that make use of hydraulic conductivity (K) determination in the vadose zone. The most accurate estimates of hydraulic conductivity are possible through direct measurements or measurements of the water retention curve. For this study, the drilling and sampling of five boreholes (maximum depth 20 m) proceeded during March and April 2005 at two typical sites in the Western Cape, namely the Berg river site (Riebeek West) and Ithemba site (Cape Flats). In total, 76 undisturbed core samples were collected from which the detailed borehole log descriptions were made. The determination of the soil water retention curves of the collected samples was based on laboratory techniques using Eijkelkamp drying and suction equipment (sand box and clay box). When modelling groundwater vulnerability, it is essential to look at the soil water retention curves with increased importance, as they provide graphical and mathematical confirmation of porosity, preferential flows, volumetric water content and unsaturated hydraulic conductivity. Therefore, a numerical model called RETC was used to determine soil hydraulic properties. The RETC model uses equations of Van Genuchten (Van Genuchten, 1980) and Brooks-Corey (Brooks and Corey, 1966) to determine parameters for soil water retention and the methods of Mualem (1976) and Burdine (1953) to determine unsaturated hydraulic conductivity functions. Saturated hydraulic conductivity values were estimated by using RETC soil database based on textural descriptions of collected samples. Using the soil hydraulic estimates obtained from RETC, sensitivity analyses were run with a one dimensional transport model, Macro 5.0 for two sites at iThemba and in the Berg river.
2

Preferential flow modelling in a vadose zone using macro 5.0 – Cape flats porous sands and Mpumalanga highveld clays case studies

Majola, Kwazikwakhe Alfred January 2008 (has links)
Magister Scientiae - MSc / The objectives of this study were: To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two casestudies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment. To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix. To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport.
3

Preferential Flow Modelling in a Vadose Zone Using Macro 5.0 –Cape Flats Porous Sands.

Majola, Kwazikwakhe Alfred. January 2008 (has links)
<p><font face="Helvetica"> <p align="left">The objectives of this study were:&nbsp / To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two casestudies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment.&nbsp / To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix.&nbsp / To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport.</p> </font></p>
4

Preferential Flow Modelling in a Vadose Zone Using Macro 5.0 –Cape Flats Porous Sands.

Majola, Kwazikwakhe Alfred. January 2008 (has links)
<p><font face="Helvetica"> <p align="left">The objectives of this study were:&nbsp / To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two casestudies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment.&nbsp / To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix.&nbsp / To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport.</p> </font></p>
5

Preferential flow modelling in a vadose zone using macro 5.0 - Cape Flats porous sands and Mpumalanga highveld clays case studies

Majola, Kwazikwakhe January 2008 (has links)
>Magister Scientiae - MSc / Understanding fluid flow and solute transport within the vadose (unsaturated) zone is an essential prerequisite for protection of groundwater from contaminant sources occurring overland. Preferential flow paths in the vadose zone pose a significant problem because they are potential avenues for rapid transport of chemicals from contamination sources to the water table. The objectives of this study were: i) To review and understand flow and transport processes in unsaturated zones. In this study, particular emphasis is placed on understanding mechanisms that cause non-uniform (preferential) flow for two case studies, namely the Cape Flats sandy environment and the Mpumalanga Highveld fractured rock environment. ii) To evaluate the adequacy of models, in particular MACRO 5.0, in simulating flow and transport in the vadose zone, by making use of two case study sites (Cape Flats and Mpumalanga Highveld). Of particular importance is the evaluation of transfer coefficients to represent fluid and solute exchange between macropores and matrix. iii) To run a sensitivity analysis with MACRO 5.0 in order determine which input model parameters are the most relevant in describing the effects of preferential flow in water and solute transport. Two case studies were investigated, the first at a landfill site overlying sandy unconfined aquifer (Coastal Park, Cape Town), and the second at an industrial site overlying cracking clayey soil and fractured rocks (Mpumalanga Highveld - Secunda, Mpumalanga Province). For the Coastal Park site, simulations of soil water content and leaching of a generic mobile contaminant were compared to monitored soil water contents and chloride concentrations in groundwater. For the Mpumalanga Highveld site, simulations of soil water content and concentrations of boron and fluoride originating from effluent irrigation were compared to soil profile measurements. In both cases, the MACRO 5.0 model predictions agreed with measurements well, provided appropriate input calibration data were used. The sensitivity analysis indicated that soil water properties related to preferential flow (hydraulic conductivity at the boundary between macropores and matrix, soil water content and tension, and diffusion) have influence on simulation results. Similarly, the solute balance is mostly influenced by degradation rate coefficients (both in solid and liquid phases), sorption distribution coefficients and solute concentrations.

Page generated in 0.024 seconds