11 |
Premissas para implantação de uma linha de trem magnético na região metropolitana de Juiz de ForaAmaral, Wilian Daniel Henriques do 28 March 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-04T13:20:07Z
No. of bitstreams: 1
wiliandanielhenriquesdoamaral.pdf: 7621379 bytes, checksum: 597d83ce13c3f7565887a87a3de3bd17 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-09-04T13:25:42Z (GMT) No. of bitstreams: 1
wiliandanielhenriquesdoamaral.pdf: 7621379 bytes, checksum: 597d83ce13c3f7565887a87a3de3bd17 (MD5) / Made available in DSpace on 2018-09-04T13:25:42Z (GMT). No. of bitstreams: 1
wiliandanielhenriquesdoamaral.pdf: 7621379 bytes, checksum: 597d83ce13c3f7565887a87a3de3bd17 (MD5)
Previous issue date: 2018-03-28 / A mobilidade urbana nas cidades se refere à facilidade de deslocamentos de pessoas e cargas no espaço urbano. A complexidade do tema envolve a interação de como as cidades são pensadas, materializadas e como se organizam nos seus usos e ocupações espaciais. Atualmente, trens de levitação magnética, tem se mostrado um meio de transporte inovador e com grande potencial para atender as novas demandas contemporâneas, que cada vez mais buscam soluções rápidas e eficazes para questões complexas. Com a possibilidade de atuação inteiramente autônoma, esses veículos são capazes de atingir altas velocidades, reduzindo o tempo de deslocamento e contribuindo consideravelmente para a redução de emissões de poluentes e ruídos. O presente trabalho tem por objetivo propor premissas de implantação de trens de levitação magnética na região metropolitana de Juiz de Fora/MG. A integração em rede leva em consideração aspectos fundamentais de equipamentos urbanos existentes e até subutilizados, criando assim, um sistema de integração intermodal de cargas e passageiros num eixo conector do Aeroporto Regional Presidente Itamar Augusto Cautieiro Franco, também conhecido por Aeroporto Regional da Zona da Mata, ao centro do município, perpassando dentro dos seus 65km de extensão o distrito industrial, buscando um fluxo de carga e passageiros, de forma rápida e segura. Tais premissas buscam contribuir para o debate e possibilitar futuras pesquisas de mobilidade. A metodologia do trabalho consiste na criação de um suporte teórico embasado por uma criteriosa revisão sistemática da literatura e estudos de casos no cenário internacional, a partir dos quais se esboça um traçado teórico para a linha conectora à luz da tecnologia de levitação magnética e da avaliação das redes de tráfego de Juiz de Fora ao longo de toda sua história. Conclui-se que o traçado e a tecnologia empregada trazem contribuições positivas para a mobilidade urbana da região de estudo, muito embora o investimento para sua implantação seja considerado alto. / Urban mobility in Cities refers to the ease of people and load displacements in the urban space. The theme complexity involves the interaction between how cities are thought out, materialized and how they organize its uses and space occupations. Currently, magnetic levitation trains have shown to be an innovative means of transportation with great potential to meet the new contemporary demands, which increasingly seek quick and effective solutions for complex issues. With the possibility of fully autonomous operation, these vehicles are able to reach high speeds while maitaining the passenger capacity observed in the rail modal, reducing the travel times and contributing considerably to the reduce pollutants and noise emissions. The purpose of the present work is to propose the assumptions of the implantation of magnetic levitation trains in the metropolitan area of Juiz de Fora/MG. A network integration is supposed taking into account fundamental aspects of existing and even underutilized urban equipment, thus creating a system that allows intermodal integration of both cargo and passengers in a connector axis between the Regional Airport President Itamar Augusto Cautieiro Franco, also known as the Zona da Mata Regional Airport, to the center of the municipality, crossing within its 65km of extension the city’s industrial district, seeking a fast and safe flow of cargo and passengers. Such premises seek to contribute to the debate and to enable future mobility research. The work methodology consists in the creation of a theoretical support based on a careful systematic revision of the literature and case studies in the international scenario, from which a theoretical plot is drafted for the connecting line under the light of magnetic levitation technology and the evaluation of the Juiz de Fora’s traffic networks throughout its history. It is concluded that the tracing and the technology employed bring positive contributions to the urban mobility of the study region despite its high implementation costs.
|
12 |
Maglev high speed ground transportation for the Texas Triangle : a technology assessmentRojas, Gabriel, active 2007 20 November 2013 (has links)
A maglev rail network connecting the Texas Triangle has the ability to unite this
emerging mega-region with a highly efficient alternative to auto and air transport. This would
serve to increase the economic sharing of resources and will improve the quality of life for
residents with enhanced accessibility to jobs and services in all triangle cities. Many
unforeseen benefits materialize from such a highly connected regional transportation
infrastructure including cost reductions in highway maintenance and construction and
reduced air traffic in congested skies and airports. This study examines the reasons for
choosing a maglev system, regulatory barriers to implementing such a system, and the costs
associated with a Maglev system built in the Texas Triangle. / text
|
13 |
Ανάλυση, εφαρμογή και πειραματική μελέτη μηχανικού συστήματος αιώρησης / Analysis, implementation and experimental study of mechanical levitation systemΚασιδάκης, Ευθύμιος, Λαδιάς, Νικόλαος 04 October 2011 (has links)
Σκοπός της διπλωματικής εργασίας, είναι η κατασκευή ενός κυκλώματος με ανάδραση για τον έλεγχο ενός ηλεκτρομαγνήτη με στόχο την αιώρηση ενός σταθερού μαγνητικού αντικειμένου. / The purpose of the thesis is to build a circuit with feedback in order to control a solenoid to levitate a constant magnetic object.
|
14 |
Novel active magnetic bearings for direct drive C-Gen linear generatorBarajas Solano, José Ignacio January 2017 (has links)
This document presents a novel active magnetic levitation system. In the pursued of this endeavour different topics related with wave energy were explore. Climate change and energy security are the main motivation to pursued new options for non-fossil fuels energy generation. An overview of renewable energy and specifically of wave energy was presented. The potential for wave energy in The United Kingdom turn out to be 75 TWh/year from wave energy, 3 times more of what wind energy has produced in 2013. This means a massive impact on the energy market and emission reduction. In order to achieve this, improvements on wave energy devices have to be done. An overview of wave energy converters was covered selecting the C-Gen as the generator topology this document will base its studies. Linear generator bearings are desired to have long lifespan with long maintenance intervals. The objective is to come with an active magnetic levitation design that can replace traditional bearings augmenting the reliability of the system. Therefore magnetic bearings option have been reviewed and simulation experimentations has resulted in a novel active magnetic levitation system using an air-cored coils Halbach array acting over a levitation track. The configuration would generate bi directional repulsion forces with respect of the levitating body. Different software were used to analyse the magnetic field and forces generation. Additionally a prototype was built and tested to corroborate the results. As part of the modelling a mathematical model was explored and robust control implementation was also realised. Finally a scalability study of the device as well as a reliability analysis was done. Although the reliability studies shows an increase of ten times of the mean time to failure, the concept is not able to endure the loads acting on the generator unless the magnetic bearings became bigger than the generator and therefore economically unfeasible.
|
15 |
Modeling Automated Highway System Guideway OperationsSiess, Eric Joseph 04 February 1998 (has links)
The purpose of this research is to explore the operational characteristics of a Maglev-based Automated Highway System and how it would interact with freeway operations. The extension of traditional traffic flow phenomenon, including weaving, merging, and stopping distance, into the automated system is looked at. These are also extended into platoon operations and their effect on such properties as gap control and ultimately the capacity of such a system. The ability to incorporate an AHS system into the existing Interstate Highway System is investigated. This includes placing the magways in the right-of-way of the highway system and interfacing the AHS with the existing freeways. A model is developed and run to simulate the assignment of traffic between the freeway and the guideway links. Both operational concepts of user equilibrium and system optimal conditions are explored, and equations are found to estimate the amount of traffic which can be found on the links based on the total traffic volume. / Master of Science
|
16 |
Analysis And Modeling Of The Eds Maglev System Based On The Halbach Permanent Magnet ArrayHan, Qinghua 01 January 2004 (has links)
Electro-dynamic suspension (EDS) Magnetic levitation (Maglev) with its advantage in maintenance, safety, efficiency, speed, and noise is regarded as a leading candidate for the next generation transportation / space launch assist system. The Halbach array due to its unique magnetic field feature has been widely used in various applications. The EDS system using Halbach arrays leads to the potential EDS system without super-conductor (SC) technology. In this thesis, the Halbach array magnetic field and the dynamics of a novel Halbach array EDS Maglev system were considered. The practical Halbach array magnetic field was analyzed using both a Fourier series approach and the finite element method (FEM). In addition, the optimal Halbach array geometry was derived and analyzed. A novel active magnetic array was introduced and used in the Halbach array EDS Maglev configuration. Further more, since the system is self-regulated in lateral, roll, pitch, and yaw directions, the control was simplified and can be implemented electronically. The dynamic stability analysis and simulation results showed that the system is marginally stable and a control mechanism is needed for stability and ride comfort control. The six degree of freedom (DOF) dynamics, and the vehicle's mass center offset effects on those dynamics were investigated with multiple passive and active magnetic forces. The results indicated that the vehicle's mass center offset has a strong effect on the dynamics of the Maglev system due to the uniqueness of the magnetic force and also that the mass center offset can cause Maglev oscillations at the take off stage. In order to guarantee the dynamic stability and ride comfort of the Maglev system, an optimized active damping and a linear quadratic regulator (LQR) control were developed. Finally, the simulation confirmed the effectiveness of the proposed multi-input and multi-output (MIMO) control designs.
|
17 |
Vehicle dynamics modelling of electromagnetic suspensions for MAGLEV applications / Fordonsdynamik Modellering av elektromagnetiska upphängningar för MAGLEV-tillämpningarChatelais, Léa January 2024 (has links)
MAGnetic LEVitation Guidance System (MAGLEV) technology was commercially introduced relatively recently in the guided transport field. It is based on removing the wheels and rails of classic railway systems and supporting and guiding the train with magnets and magnetic forces instead. But, as for conventional railways, those trains need to fulfil dynamic requirements in order to make trains safe and comfortable. The dynamics of a train being mainly influenced by its suspensions characteristics, the magnetic forces generated in MAGLEV systems are of prime importance. Having a model of those systems allows to check the requirements of a certain design, and to consider the influence of different parameters on their fulfilment. This thesis leans on research work on MAGLEV vehicle modelling to model and implement magnetic levitation components in a quarter-car model in order to study the fulfilment of vehicle dynamics requirements. Specifically, the modelled vehicles are based on Electro- Magnetic Suspension (EMS) and Electro-Dynamic Suspension (EDS) (Inductrack) technologies, for which the modelling equations are analysed to study the magnetic force dependencies with physical and operational parameters. Finally, the dynamic requirements are checked in response to a set of track irregularities amplitudes, anda parametric study is carried out to verify the fulfilment of those requirements for other design cases. The results show that it is possible to model and implement simple MAGLEV MBS models for dynamic studies, although it is challenging to model and simulate specific MAGLEV components because of the lack of component specifications or experimental data on track irregularities. / MAGLEV-tekniken introducerades kommersiellt relativt nyligen inom området för marktransporter. Denbygger på att man tar bort hjul och räls från klassiska järnvägssystem och istället stöder och styr tåget med magneter och magnetiska krafter. Men precis som för konventionella järnvägar måste dessa tåg uppfylla dynamiska krav för att tågen ska vara säkra och bekväma. Eftersom ett tågs dynamik huvudsakligen påverkas av dess upphängningsegenskaper, är de magnetiska krafter som genereras i MAGLEVsystem av största betydelse. Genom att ha en modell av dessa system kan man kontrollera kraven för en viss konstruktion och överväga hur olika parametrar påverkar deras uppfyllande. Detta mastersarbete behandlar MAGLEV-fordonsmodellering för att implementera magnetiska levitationskomponenter i en kvartsfordonsmodell för att studera uppfyllandet av fordonsdynamiska krav. De modellerade fordonen är baserade på EMS- och EDS-teknik, för vilka modelleringsekvationerna analyseras för att studera den magnetiska kraftens beroende av fysiska och operativa parametrar. Slutligen kontrolleras de dynamiska kraven som svar på en uppsättning amplituder för ojämnheter i banan, och en parametrisk studie utförs för att verifiera uppfyllandet av dessa krav för andra konstruktionsfall. Resultaten visar att det är möjligt att modellera och implementera enkla MAGLEV MBS-modeller för dynamiska studier, även om det är en utmaning att göra det med specifika MAGLEV-komponenter på grund av bristen på komponentspecifikationer eller experimentella data om banojämnheter.
|
18 |
Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension systemMichail, Konstantinos January 2009 (has links)
New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks.
|
19 |
Magnetic Levitation of Polymeric Photo-thermal MicrogrippersElbuken, Caglar January 2008 (has links)
Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of
magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation.
In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated
with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by
reducing the positioning error to 20.3 µm.
For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively
characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties.
It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited
magnetic samples shows a great promise toward the fabrication of levitating MEMS devices.
The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The
microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact
actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized
experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot.
The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when
electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated
on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire,
125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed
chamber without sacrificing the positioning accuracy.
|
20 |
Magnetic Levitation of Polymeric Photo-thermal MicrogrippersElbuken, Caglar January 2008 (has links)
Precise manipulation of micro objects became great interest in engineering and science with the advancements in microengineering and microfabrication. In this thesis, a magnetically levitated microgripper is presented for microhandling tasks. The use of
magnetic levitation for positioning reveals the problems associated with modeling of complex surface forces and the use of jointed parts or wires. The power required for the levitation of the microgripper is generated by an external drive unit that makes further minimization of the gripper possible. The gripper is made of a biocompatible material and can be activated remotely. These key features make the microgripper a great candidate for manipulation of micro components and biomanipulation.
In order to achieve magnetic levitation of microrobots, the magnetic field generated by the magnetic levitation setup is simulated. The magnetic flux density in the air gap region is improved by the integration of permanent magnets and an additional electromagnet to the magnetic loop assembly. The levitation performance is evaluated
with millimeter size permanent magnets. An eddy current damping method is implemented and the levitation accuracy is doubled by
reducing the positioning error to 20.3 µm.
For a MEMS-compatible microrobot design, the electrodeposition of Co-Ni-Mn-P magnetic thin films is demonstrated. Magnetic films are deposited on silicon substrate to form the magnetic portion of the microrobot. The electrodeposited films are extensively
characterized. The relationship between the deposition parameters and structural properties is discussed leading to an understanding of the effect of deposition parameters on the magnetic properties.
It is shown that both in-plane and out-of-plane magnetized films can be obtained using electrodeposition with slightly differentiated deposition parameters. The levitation of the electrodeposited
magnetic samples shows a great promise toward the fabrication of levitating MEMS devices.
The end-effector tool of the levitating microrobot is selected as a microgripper that can achieve various manipulation operations such as pulling, pushing, tapping, grasping and repositioning. The
microgripper is designed based on a bent-beam actuation technique. The motion of the gripper fingers is achieved by thermal expansion through laser heat absorption. This technique provided non-contact
actuation for the levitating microgripper. The analytical model of the displacement of the bent-beam actuator is developed. Different designs of microgripper are fabricated and thoroughly characterized
experimentally and numerically. The two microgripper designs that lead to the maximum gripper deflection are adapted for the levitating microrobot.
The experimental results show that the levitating microrobot can be positioned in a volume of 3 x 3 x 2 cm^3. The positioning error is measured as 34.3 µm and 13.2 µm when
electrodeposited magnets and commercial permanent magnets are used, respectively. The gripper fingers are successfully operated
on-the-fly by aligning a visible wavelength laser beam on the gripper. Micromanipulation of 100 µm diameter electrical wire,
125 µm diameter optical fiber and 1 mm diameter cable strip is demonstrated. The microgripper is also positioned in a closed
chamber without sacrificing the positioning accuracy.
|
Page generated in 0.0282 seconds