1 |
Melanophore signaling : regulation and application /Andersson, Tony, P. M. January 2003 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2003. / Härtill 5 uppsatser.
|
2 |
The roles of ERK₁ and ERK₂ MAP kinase in neural development and diseaseSamuels, Ivy S. January 2008 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2008. / [School of Medicine] Department of Neurosciences. Includes bibliographical references.
|
3 |
Intracellular signalling during murine oocyte growthHurtubise, Patricia. January 2000 (has links)
During the growth phase of oogenesis, mammalian oocytes increase several hundred-fold in volume. Although it is known that ovarian granulosa cells send growth promoting signals, neither these external signals nor the transduction pathways that become activated in the oocyte are known. Therefore, the presence and the activity of candidate signaling pathways in growing murine oocytes were investigated. By immunoblotting, the MAP kinases, ERK1 and ERK2, as well as their activating kinase MEK, were detected in oocytes at all stages of growth. However, using a phospho-specific anti-ERK antibody, no immunoreactive species were detectable in isolated granulosa cells or oocytes at any stage of growth, except metaphase II. Phosphorylated ERK was also present, although in smaller quantities, in oocyte-granulosa cell complexes at the later stages of growth. Furthermore, when ovarian sections were stained with an anti-ERK antibody, the protein was found to be highly concentrated in the cytoplasm of oocytes at all stages of growth, with lower levels in the nucleus. Another member of the MAP kinase family, Jun kinase (JNK), was investigated. By immunoblotting, JNK was detected in growing oocytes. Experiments using an anti-JNK antibody on ovary sections revealed the protein to be uniformly distributed in non-growing and growing oocytes with no evidence of preferential nuclear localization. These results imply that an interaction between the oocyte and the granulosa cells may be required to generate phosphorylated ERK. They also imply that growth signals probably are not relayed through ERK, but do not exclude a role for Jun kinase in mediating oocyte growth.
|
4 |
Transcript profiling of a MAP kinase pathway in C. albicansHuang, Hao, 1967- January 2006 (has links)
In C. albicans, a MAP kinase pathway has been implicated in aspects of controlling hyphal development. We have examined the transcription profile of cells deleted for the transcription factor Cph1 as well as Cst20, Hst7 and Cek1, three upstream kinases potentially involved in Cph1 regulation. Deletion of these four elements does not block filament induction by serum and does not dramatically affect the transcription profile of yeast-hyphal transition, but deletion of CPH1 delays filamentation. Over-expression of Cph1 by ADH1pt-CPH1 significantly enhances filamentation, suggesting that Cph1 is helpful but not essential for filament induction. Interestingly, the transcription profile of ADH1pt-CPH1 expressing cells under yeast conditions is similar to that of wild type strains undergoing the yeast-hyphal transition. Finally, it appears that Cek1 and its regulators Hst7 and Cst20 may control the repression of genes such as CHT2 through a process independent of the Cph1p transcription factor.
|
5 |
Protein tyrosine kinases and the regulation of signalling and adhesion in Drosophila melanogaster /Grabbe, Caroline, January 2007 (has links)
Diss. (sammanfattning) Umeå : Umeå Universitet, 2007. / Härtill 5 uppsatser.
|
6 |
Kinase cascades in the regulation of glucose homeostasis /Steiler, Tatiana L., January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
|
7 |
Receptor tyrosine kinase c-Kit signalling in hematopoietic progenitor cells /Edling, Charlotte, January 2006 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2006. / Härtill 3 uppsatser.
|
8 |
Stress Activated Protein Kinase Regulation of Gene Expression in Apoptotic Neurons: A DissertationDe Zutter, Gerard S. 11 July 2001 (has links)
Summary
Basic biological processes require gene expression. Tightly regulated molecules known as transcription factors mediate the expression of genes in development and disease. Signal transduction pathways, which respond to environmental cues or stressors are major regulators of the transcription factors. Use of macromolecular synthesis inhibitors in models of normal neurodevelopment and neurodegenerative cell death has led to the discovery that gene expression is required for these processes to occur (Martin et. al.,(1988), J Cell Biol 106p829). To date, however, the identities of very few of the genes required in these events have been revealed. Hence, the activation or requirement of specific signaling pathways leading to the expression of known apoptotic genes is not well established. Utilizing the neurothrophic factor deprivation and neurotoxin models of programmed cell death we address these gaps in our understanding of the molecular mechanism of apoptosis as it occurs in neuronal cell death.
Nerve growth factor (NGF) withdrawal from PC12 cells leads to the activation of p38 and apoptosis. The functional significance of 38 activation in this paradigm of cell death is not known. To increase our understanding of apoptosis I examined the requirement for p38 activity in pro-apoptotic gene expression in PC12 cells. I performed a subtractive hybridization that led to the identification of the monoamine oxidase (MAG) gene as induced in response to NGF withdrawal. Using the p38 inhibitor PD169316 I showed that the NGF withdrawal stimulated induction of the MAG gene and apoptosis is blocked by inhibition of the p38 MAP kinase pathway. I also determined that the MAG inhibitor clorgyline blocked cell death indicating that MAG activity contributes to the cell death caused by NGF withdrawal. Together, these data indicate that the p38 MAP kinase pathway targets the MAG gene in response to apoptotic stimuli.
To study the requirement for the JNK signaling pathway in neurodegeneration I stimulated primary cortical neurons with the neurotoxin arsenite. Arsenite treatment of primary neurons leads to both JNK and p38 activation and subsequently apoptosis. Utilizing transgenic mice lacking the JNK3 gene I demonstrated that JNK3 specifically contributes to the effects of arsenite in these cells. Ribonuclease protection assays were used to identify Fas ligand as a molecule whose arsenite-induced expression is dependent on the JNK3 signal transduction pathway. Furthermore, I have shown that neurons deficient in signaling mediated by the receptor for Fas ligand are resistant to cell death due to arsenite treatment. These results in total have established that the JNK3 mediated expression of Fas ligand contributes to the arsenite induced death of cortical neurons.
In summary, the work presented in these studies identifies the JNK and p38 MAP kinase signal transduction pathways as mediators of apoptosis in neuronal cells. Importantly, I have provided evidence that these stress activated pathways are responsible for the expression of specific genes in apoptotic neuronal cells.
|
9 |
Intracellular signalling during murine oocyte growthHurtubise, Patricia. January 2000 (has links)
No description available.
|
10 |
Transcript profiling of a MAP kinase pathway in C. albicansHuang, Hao, 1967- January 2006 (has links)
No description available.
|
Page generated in 0.0972 seconds