• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 145
  • 52
  • 28
  • 25
  • 9
  • 8
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 495
  • 495
  • 495
  • 136
  • 136
  • 113
  • 106
  • 93
  • 85
  • 85
  • 81
  • 70
  • 67
  • 65
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Přírodní biomateriály a mesenchymální kmenové buňky v léčbě míšního poranění / Natural biomaterials and mesenchymal stem cells in regeneration of spinal cord injury

Kekulová, Kristýna January 2019 (has links)
Spinal cord injury is a serious trauma and despite intensive research there is still no effective treatment for patients. The aim of this thesis is to study new possibilities of spinal cord injury therapy in animal models. We have focused on the use of natural materials, stem cells, gene therapy and the possibility of combining these approaches. The effect of extracellular matrix (ECM) based materials prepared by decellularization of porcine spinal cord and porcine urinary bladder on tissue regeneration after acute hemisection of the spinal cord was investigated. Another tested material was a hydrogel based on hyaluronic acid modified with RGD adhesion peptide, which was applied acutely and subacutely into the hemisection lesion. We have shown that both types of biomaterials have positive effect on regeneration of the spinal cord tissue by bridging the lesion and promotion of axonal ingrowth. In addition, ECM hydrogels promote the growth of blood vessels into the lesion site. The combination of hydrogels with mesenchymal stem cells derived from human umbilical cord (hWJ-MSCs) had synergistic effect, but since only a limited number of cells could be incorporated into hydrogels, this effect was not associated with improvement in motor skills. The limitation of ECM hydrogels is their rapid...
422

Osteogenic Potential of Mesenchymal Stem Cells from Adipose Tissue, Bone Marrow and Hair Follicle Outer Root Sheath in a 3D Crosslinked Gelatin-Based Hydrogel

Li, Hanluo, Nawaz, Hafiz Awais, Masieri, Federica Francesca, Vogel, Sarah, Hempel, Ute, Bartella, Alexander K., Zimmerer, Rüdiger, Simon, Jan-Christoph, Schulz-Siegmund, Michaela, Hacker, Michael, Lethaus, Bernd, Savković, Vuk 19 December 2023 (has links)
Bone transplantation is regarded as the preferred therapy to treat a variety of bone defects. Autologous bone tissue is often lacking at the source, and the mesenchymal stem cells (MSCs) responsible for bone repair mechanisms are extracted by invasive procedures. This study explores the potential of autologous mesenchymal stem cells derived from the hair follicle outer root sheath (MSCORS). We demonstrated that MSCORS have a remarkable capacity to differentiate in vitro towards the osteogenic lineage. Indeed, when combined with a novel gelatin-based hydrogel called Osteogel, they provided additional osteoinductive cues in vitro that may pave the way for future application in bone regeneration. MSCORS were also compared to MSCs from adipose tissue (ADMSC) and bone marrow (BMMSC) in a 3D Osteogel model. We analyzed gel plasticity, cell phenotype, cell viability, and differentiation capacity towards the osteogenic lineage by measuring alkaline phosphatase (ALP) activity, calcium deposition, and specific gene expression. The novel injectable hydrogel filled an irregularly shaped lesion in a porcine wound model displaying high plasticity. MSCORS in Osteogel showed a higher osteo-commitment in terms of calcium deposition and expression dynamics of OCN, BMP2, and PPARG when compared to ADMSC and BMMSC, whilst displaying comparable cell viability and ALP activity. In conclusion, autologous MSCORS combined with our novel gelatin-based hydrogel displayed a high capacity for differentiation towards the osteogenic lineage and are acquired by non-invasive procedures, therefore qualifying as a suitable and expandable novel approach in the field of bone regeneration therapy
423

Mineralizing Gelatin Microparticles as Cell Carrier and Drug Delivery System for siRNA for Bone Tissue Engineering

Hinkelmann, Sandra, Springwald, Alexandra H., Schulze, Sabine, Hempel, Ute, Mitrach, Franziska, Wölk, Christian, Hacker, Michael C., Schulz-Siegmund, Michaela 02 June 2023 (has links)
The local release of complexed siRNA from biomaterials opens precisely targeted therapeutic options. In this study, complexed siRNA was loaded to gelatin microparticles cross-linked (cGM) with an anhydride-containing oligomer (oPNMA). We aggregated these siRNA-loaded cGM with human mesenchymal stem cells (hMSC) to microtissues and stimulated them with osteogenic supplements. An efficient knockdown of chordin, a BMP-2 antagonist, caused a remarkably increased alkaline phosphatase (ALP) activity in the microtissues. cGM, as a component of microtissues, mineralized in a differentiation medium within 8–9 days, both in the presence and in the absence of cells. In order to investigate the effects of our pre-differentiated and chordin-silenced microtissues on bone homeostasis, we simulated in vivo conditions in an unstimulated co-culture system of hMSC and human peripheral blood mononuclear cells (hPBMC). We found enhanced ALP activity and osteoprotegerin (OPG) secretion in the model system compared to control microtissues. Our results suggest osteoanabolic effects of pre-differentiated and chordin-silenced microtissues.
424

The Middle Part of the Plucked Hair Follicle Outer Root Sheath Is Identified as an Area Rich in Lineage-Specific Stem Cell Markers

Li, Hanluo, Masieri, Federica Francesca, Schneider, Marie, Bartella, Alexander, Gaus, Sebastian, Hahnel, Sebastian, Zimmerer, Rüdiger, Sack, Ulrich, Maksimovic-Ivanic, Danijela, Mijatovic, Sanja, Simon, Jan-Christoph, Lethaus, Bernd, Savkovic, Vuk 02 May 2023 (has links)
Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells.
425

READILY IMPLANTABLE HIGH DENSITY STEM CELL SYSTEMS WITH CONTROLLED GROWTH FACTOR PRESENTATION FROM BIOACTIVE MICROPARTICLES FOR BONE REGENERATION VIA ENDOCHONDRAL OSSIFICATION

Dang, Phuong Ngoc 03 June 2015 (has links)
No description available.
426

Electroactive Environments for Mesenchymal Stem Cells Osteogenic Differentiation

Guillot Ferriols, María Teresa 30 December 2022 (has links)
Tesis por compendio / [ES] El aumento de la esperanza de vida conlleva la aparición de problemas muscoloesqueléticos afectando a la calidad de vida de los pacientes. Las nuevas terapias regenerativas óseas se centran en el uso de las células madre mesenquimales, MSCs, encargadas de la regeneración del tejido in vivo. La inducción de un fenotipo osteogénico prediferenciado in vitro, previo a la implantación de las MSCs, resulta en una mejor capacidad de regeneración del tejido óseo. Habitualmente se han empleado medios de diferenciación osteogénica que contienen dexametasona. Estos métodos son poco eficientes, por lo que el uso de métodos físicos está adquiriendo relevancia. El hueso es un tejido con propiedades piezoeléctricas debido a las fibras de colágeno que forman parte de su matriz extracelular. Este estímulo ha sido relacionado con su capacidad de responder al estrés mecánico y autoregenerarse, donde juegan un papel importante las MSCs. Éstas se encuentran en un entorno electroactivo, y son precisamente estas señales físicas las que pueden influir en su proceso de diferenciación osteogénica pudiendo ser empleadas para su prediferenciación in vitro de forma efectiva. Para comprobar esta hipótesis, en la presente Tesis Doctoral se han diseñado soportes de cultivo piezoeléctricos en 2 y 3 dimensiones basados en el uso del polímero piezoeléctrico polifluoruro de vinilideno (PVDF) combinados con partículas magnetostrictivas de ferrita de cobalto (CFO). Esta combinación permite la estimulación de los soportes de cultivo aplicando un campo magnético con un biorreactor. Este campo magnético genera la deformación del componente magnetostrictivo, que es transmitida a la matriz polimérica, deformándola y generando un campo eléctrico. Ésta última es transmitida a las células cultivadas en estos soportes para estudiar su efecto sobre la diferenciación osteogénica. En el primer capítulo se desarrollaron y caracterizaron membranas electroactivas de PVDF fabricadas por el método de separación de fases inducida por no-solventes. Se empleó etanol como no-solvente, dando lugar a membranas homogéneas altamente porosas. Estas cristalizan en fase g. Se optimizó un recubrimiento basado en la técnica capa a capa (LbL), empleando recombinámeros similares a la elastina (ELRs) que contenían secuencias de adhesión celular RGD. Se estudió la respuesta celular inicial de las MSCs y se comparó con los mismos soportes recubiertos únicamente con fibronectina adsorbida. La presencia de los ELRs es necesaria para promover la adhesión inicial de las MSCs en este tipo de soportes. En el segundo capítulo se combinó el PVDF con CFO, usando agua como no-solvente. Las membranas eran no simétricas, con una superficie lisa, que fue empleada para cultivo celular, con una mayoría en fase b, la más electroactiva. Se recubrieron y caracterizaron las membranas mediante LbL con colágeno tipo I y heparina. Se estudió el comportamiento de las MSCs sobre el LbL, resultando esencial para la proliferación celular en el caso de las membranas PVDF-CFO. En el capítulo tres se desarrollaron films de PVDF y PVDF-CFO cristalizados en presencia del líquido iónico [Bmim][Cl]. La presencia de éste indujo la nucleación del PVDF en fase b. Las MSCs eran capaces de adherirse y proliferar. Se realizaron ensayos de estimulación piezoeléctrica empleando un biorreactor magnético. Las MSCs respondieron a la estimulación incrementado la longitud de sus adhesiones focales, así como reduciendo la vimentina en el citoplasma. Finalmente, se diseñaron soportes de cultivo piezoeléctricos en 3D. Para ello se desarrollaron microesferas de PVDF y PVDF-CFO mediante la técnica de electropulverizado. Las microesferas se encapsularon en hidrogeles de gelatina junto con las MSCs. Se estimularon y tras 7 días, se observó un incremento en la expresión del factor de transcripción RUNX2 en las muestras estimuladas demostrando que la estimulación piezoeléctrica es capaz de activar en mayor medida la diferenciación de las MSCs. / [CA] L'augment de l'esperança de vida comporta l'aparició de problemes muscoloesquelètics afectant la qualitat de vida dels pacients. Les noves teràpies regeneratives òssies es centren en l'ús de les cèl·lules mare mesenquimals, MSCs, encarregades de la regeneració del teixit in vivo. La inducció d'un fenotip osteogènic prediferenciat in vitro, previ a la implantació de les MSCs, resulta en una millor capacitat de regeneració del teixit ossi. Habitualment s'han fet servir mitjans de diferenciació osteogènica que contenen dexametasona. Aquests mètodes són poc eficients, per la qual cosa l'ús de mètodes físics està adquirint rellevància. L'os és un teixit amb propietats piezoelèctriques a causa de les fibres de col·lagen que formen part de la seva matriu extracel·lular. Aquest estímul ha estat relacionat amb la capacitat de respondre a l'estrès mecànic i autoregenerar-se, on juguen un paper important les MSCs. Aquestes es troben en un entorn electroactiu, i són precisament aquests senyals físics els que poden influir en el seu procés de diferenciació osteogènica podent ser emprats per a la seva prediferenciació in vitro de manera efectiva. Per comprovar aquesta hipòtesi, a la present tesi doctoral s'han dissenyat suports de cultiu piezoelèctrics en 2 i 3 dimensions basats en l'ús del polímer piezoelèctric polifluorur de vinilidè (PVDF) combinats amb partícules magnetostrictives de ferrita de cobalt (CFO). Aquesta combinació permet l'estimulació dels suports de cultiu aplicant un camp magnètic amb un bioreactor. Aquest camp magnètic genera la deformació del component magnetostrictiu, que és transmesa a la matriu polimèrica, deformant-la i generant un camp elèctric. Aquesta última és transmesa a les cèl·lules cultivades en aquests suports per estudiar-ne l'efecte sobre la diferenciació osteogènica. En el primer capítol es van desenvolupar i caracteritzar membranes electroactives de PVDF fabricades pel mètode de separació de fases induïda per no solvents. Es va emprar etanol com a no-solvent, donant lloc a membranes homogènies altament poroses. Aquestes cristal·litzen en fase g. S'optimitzà un recobriment basat en la tècnica capa a capa (LbL), emprant recombinàmers similars a l'elastina (ELRs) que contenien seqüències d'adhesió cel·lular RGD. Es va estudiar la resposta cel·lular inicial de les MSCs i es va comparar amb els mateixos suports recoberts únicament amb fibronectina adsorbida. La presència dels ELR és necessària per promoure l'adhesió inicial de les MSCs en aquest tipus de suports. En el segon capítol es va combinar el PVDF amb CFO, usant aigua com a no-solvent. Les membranes eren no simètriques, amb una superfície llisa, que va ser emprada per a cultiu cel·lular, amb una majoria en fase b, la més electroactiva. Es van recobrir i caracteritzar les membranes mitjançant LbL amb col·lagen tipus I i heparina. Es va estudiar el comportament de les MSCs sobre el LbL, resultant essencial per a la proliferació cel·lular en el cas de les membranes PVDF-CFO. Al capítol tres es van desenvolupar films de PVDF i PVDF-CFO cristal·litzats en presència del líquid iònic [Bmim][Cl]. La seva presència va induir la nucleació del PVDF en fase b. Les MSCs eren capaces d'adherir-se i proliferar. Es van realitzar assajos d'estimulació piezoelèctrica emprant un bioreactor magnètic. Les MSCs van respondre a l'estimulació incrementant la longitud de les seves adhesions focals, així com reduint la vimentina al citoplasma. Finalment, es van dissenyar suports de cultiu piezoelèctrics en 3D. Per això es van desenvolupar microesferes de PVDF i PVDF-CFO mitjançant la tècnica d'electropolveritzat. Les microesferes es van encapsular en hidrogels de gelatina juntament amb les MSCs. Es van estimular i després de 7 dies, es va observar un increment en l'expressió del factor de transcripció RUNX2 a les mostres estimulades demostrant que l'estimulació piezoelèctrica és capaç d'activar més la diferenciació de les MSCs. / [EN] Life expectancy increase entails the presence of musculoskeletal disorders producing a substantial impact on patient's quality of life. New bone regenerative therapies are focused on the use of mesenchymal stem cells (MSCs), the main effectors of bone regeneration in vivo. Over the years, it has been demonstrated that the induction of a pre-differentiated phenotype in vitro, before MSCs implantation, results in a better capacity for bone tissue regeneration. For this purpose, biochemical approaches based on the use of osteogenic differentiation medium containing dexamethasone have traditionally been used. These methods are not efficient, which has favoured the use of physical methods as an alternative. Bone is a piezoelectric tissue due to the collagen fibres that conform its extracellular matrix. This stimulus has been related to its ability to respond to mechanical stress and self-regenerate, a process in which MSCs play a key role. MSCs are subjected to an electroactive environment. It is hypothesised that these physical signals may influence their osteogenic differentiation process and be used to effectively pre-differentiate them in vitro. To test this hypothesis, along this Doctoral Thesis, piezoelectric cell culture supports have been designed in 2 and 3 dimensions based on the use of the piezoelectric polymer poly(vinylidene) fluoride (PVDF) combined with magnetostrictive cobalt ferrite oxide (CFO) nanoparticles. This combination allows the stimulation of culture supports by applying a magnetic field with a bioreactor. This magnetic field induces the deformation of the magnetostrictive component, which is transmitted to the polymeric matrix, generating a deformation and producing an electric field, which is transmitted to the MSCs to study its effect on their osteogenic differentiation. In the first chapter, electroactive PVDF membranes manufactured by the non-solvent induced phase separation technique were developed and characterised. Ethanol was used as a non-solvent, which gave rise to highly porous homogeneous membranes crystallised in the g phase. A coating protocol based on the layer-by-layer (LbL) technique, using elastin-like recombinamers (ELRs) containing RGD cell adhesion sequences, was optimised. MSCs' initial cellular response was studied and compared with the membranes coated with adsorbed fibronectin. The presence of the ELRs was necessary to promote MSCs' initial adhesion in this type of support. In the second chapter, PVDF was combined with CFO, using water as a non-solvent. The membranes were not symmetrical, with a smooth surface used for cell culture, with a majority in phase b, the most electroactive. Membranes were coated and characterised by LbL with type I collagen and heparin. The behaviour of MSCs on LbL was studied, essential for cell proliferation in the case of PVDF-CFO membranes. In chapter three, PVDF and PVDF-CFO films crystallised in the presence of the ionic liquid [Bmim][Cl] were developed. The presence of ionic liquid induced PVDF nucleation in the b phase. MSCs were able to adhere and proliferate. Piezoelectric stimulation tests were performed using a magnetic bioreactor. MSCs responded to stimulation by increasing the length of their focal adhesions and reducing vimentin in the cytoplasm. Finally, 3D piezoelectric culture supports were designed. For this, PVDF and PVDF-CFO microspheres were developed using the electrospray technique. The microspheres were encapsulated in gelatin hydrogels together with the MSCs. They were stimulated, and after 7 days, an increase in the expression of the transcription factor RUNX2 was observed in the stimulated samples, demonstrating that piezoelectric stimulation is capable of activating the differentiation of MSCs to a greater extent. / La presente tesis doctoral no podría haberse realizado sin la financiación del Ministerio de Economía y Competitividad a través de la beca para formación de personal investigador BES-2017-080398 y a la Agencia Estatal de Investigación a través de los proyectos PID2019-106000RB-C21 / AEI / 10.13039/501100011033, PID2019-106099RB- C41 y –C43 / AEI / 10.13039/501100011033. / Guillot Ferriols, MT. (2022). Electroactive Environments for Mesenchymal Stem Cells Osteogenic Differentiation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/191003 / Compendio
427

Modificación genética de células estromales mesenquimales para potenciar la eficacia de las vesículas extracelulares en el ámbito de la terapia cardíaca

Buigues Caravaca, Marc 12 April 2025 (has links)
[ES] La cardiopatía isquémica, caracterizada por la falta de suministro adecuado de oxígeno al tejido cardíaco, es una afección grave que puede desencadenar un infarto agudo de miocardio y contribuir al desarrollo de la insuficiencia cardíaca (IC). A pesar de las terapias actuales, la IC sigue siendo una enfermedad con alta morbilidad y mortalidad, lo que destaca la necesidad de estrategias terapéuticas más efectivas. En este contexto, las células madre mesenquimales (MSCs) y, en especial sus vesículas extracelulares (EVs), han surgido como opciones prometedoras por sus propiedades regenerativas, pro-angiogénicas e inmunomoduladoras. Sin embargo, el reto actual se centra en mejorar la eficacia terapéutica de las EVs, ya sea mejorando su biodisponibilidad en el tejido cardíaco o potenciando sus capacidades intrínsecas, con el fin de hacer viable una terapia basada en las mismas. En este trabajo, nos hemos centrado en la mejora de las EVs mediante la modificación genética de las MSCs. Hemos seguido dos enfoques: la carga de oncostatina M (OSM) en la superficie de las EVs y la sobreexpresión inducible del dominio intracelular de Notch1 (N1ICD) junto con el factor inducible por hipoxia 1-alfa (HIF1A) en MSCs para enriquecer las EVs con factores terapéuticos, con la expectativa de mejorar su eficacia en el contexto de la isquemia cardíaca. Los resultados obtenidos muestran que las EVs cargadas con OSM poseen propiedades antifibroticas superiores a las EVs nativas, además de reducir el daño cardíaco provocado por la infusión de isoproterenol in vivo. Por otro lado, la sobreexpresión de N1ICD y HIF1A actúa a modo de precondicionamiento genético favoreciendo la carga de diferentes moléculas terapéuticas en las EVs. Estas EVs han demostrado ejercer efectos beneficiosos in vitro como la reducción de la fibrosis, la protección de los cardiomiocitos y reducción de la hipertrofia, la disminución de especies reactivas de oxígeno, y el aumento de la angiogénesis. En el estudio in vivo estas EVs redujeron el daño provocado por la infusión de isoproterenol. En conclusión, hemos generado dos tipos de EVs con un potencial terapéutico superior a las EVs nativas en el contexto de la patología cardíaca. Este trabajo abre la puerta al diseño de nuevas estrategias terapéuticas basadas en EVs, abordando de manera integral los diversos aspectos de la enfermedad cardíaca. / [CA] La cardiopatia isquèmica, caracteritzada per la falta de subministrament adequat d'oxigen al teixit cardíac, és una afecció greu que pot desencadenar un infart agut de miocardi i contribuir al desenvolupament de la insuficiència cardíaca (IC). Malgrat les teràpies actuals, la IC continua sent una malaltia amb alta morbiditat i mortalitat, la qual cosa destaca la necessitat d'estratègies terapèutiques més efectives. En este context, les cèl·lules mare mesenquimals (MSCs) i, especialment les seues vesícules extracelul·lars (EVs), han sorgit com a opcions prometedores per les seues propietats regeneratives, pro-angiogèniques i inmunomoduladores. No obstant això, el repte actual se centra en millorar l'eficàcia terapèutica de les EVs, ja siga millorant la seua biodisponibilitat en el teixit cardíac o potenciant les seues capacitats intrínseques, amb la finalitat de fer viable una teràpia basada en estes. En este treball, ens hem centrat en la millora de les EVs mitjançant la modificació genètica de les MSCs. Hem seguit dos enfocaments: la càrrega d'oncostatina M (OSM) en la superfície de les EVs i la sobreexpressió induïble del domini intracel·lular de Notch1 (N1ICD) juntament amb el factor induïble per hipòxia 1-alfa (HIF1A) en MSCs per a enriquir les EVs amb factors terapèutics, amb l'expectativa de millorar la seua eficàcia en el context de la isquèmia cardíaca. Els resultats obtinguts mostren que les EVs carregades amb OSM posseeixen propietats antifibròtiques superiors a les EVs natives, a més de reduir el dany cardíac provocat per la infusió d'isoproterenol in vivo. D'altra banda, la sobreexpressió de N1ICD i HIF1A actua a mode de precondicionament genètic afavorint la càrrega de diferents molècules terapèutiques en les EVs. Estes EVs han demostrat exercir efectes beneficiosos in vitro com la reducció de la fibrosi, la protecció dels cardiomiòcits i reducció de la hipertròfia, la disminució d'espècies reactives d'oxigen, i l'augment de l'angiogènesis. En l'estudi in vivo estes EVs van reduir el dany provocat per la infusió d'isoproterenol. En conclusió, hem generat dos tipus de EVs amb un potencial terapèutic superior a les EVs nadiues en el context de la patologia cardíaca. Este treball obri la porta al disseny de noves estratègies terapèutiques basades en EVs, abordant de manera integral els diversos aspectes de la malaltia cardíaca. / [EN] Ischemic heart disease, characterized by a lack of adequate oxygen delivery to the heart tissue, is a serious condition that can trigger acute myocardial infarction and contribute to the development of heart failure (HF). Despite current therapies, HF remains a disease with high morbidity and mortality, highlighting the need for more effective therapeutic strategies. In this context, mesenchymal stem cells (MSCs) and, especially their extracellular vesicles (EVs), have emerged as promising options due to their regenerative, pro-angiogenic and immunomodulatory properties. However, the current challenge focuses on improving the therapeutic efficacy of EVs, either by improving their bioavailability in cardiac tissue or by enhancing their intrinsic capabilities, in order to make a therapy based on them viable. In this work, we have focused on the improvement of EVs through genetic modification of MSCs. We have followed two approaches: loading of oncostatin M (OSM) on the surface of EVs and inducible overexpression of Notch1 intracellular domain (N1ICD) together with hypoxia-inducible factor 1-alpha (HIF1A) in MSCs to enrich EVs with therapeutic factors, with the expectation of improving its effectiveness in the context of cardiac ischemia. The results obtained show that OSM-loaded EVs have superior antifibrotic properties than native EVs, in addition to reducing cardiac damage caused by isoproterenol infusion in vivo. On the other hand, the overexpression of N1ICD and HIF1A acts as genetic preconditioning, favouring the loading of different therapeutic molecules in EVs. These EVs have been shown to exert beneficial effects in vitro such as reducing fibrosis, protecting cardiomyocytes and reducing hypertrophy, decreasing reactive oxygen species, and increasing angiogenesis. In the in vivo study, these EVs reduced the isoproterenol-induced myocardial damage. In conclusion, we have generated two types of EVs with a therapeutic potential superior to native EVs in the context of cardiac pathology. This work opens the door to the design of new therapeutic strategies based on EVs, comprehensively addressing the various aspects of heart disease. / Buigues Caravaca, M. (2024). Modificación genética de células estromales mesenquimales para potenciar la eficacia de las vesículas extracelulares en el ámbito de la terapia cardíaca [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/204408
428

Sauerstoffabhängige Regulation der Selenoproteinbiosynthese

Becker, Niels-Peter 13 May 2015 (has links)
Das essentielle Spurenelement Selen (Se) wird als Selenocystein (Sec) in sog. Selenoproteine eingebaut. Selenoproteine haben aufgrund von Sec besondere Eigenschaften und eine Reihe von wichtigen Funktionen im Körper. Im Menschen führt starker Se-mangel zu degenerativen Knorpelerkrankungen und stellt einen Risikofaktor für die Entwicklung von Krebs, Entzündungen, kognitiven Verfall, Schlaganfall und Schilddrüsenerkrankungen dar. Hypoxie tritt ebenfalls in einer Vielzahl schwerer Erkrankungen wie Krebs, Sepsis oder Trauma auf. Auf zellulärer Ebene wird die Hypoxieantwort über Transkriptionsfaktoren der HIF-Familie („Hypoxia-Inducible Factor“) vermittelt. Die Leber ist das zentrale Organ des Selenmetabolismus. Hier wird über die Nahrung aufgenommenes Selen in organisches Sec umgewandelt und in Form von Selenoprotein P (SePP) dem Körper zur Verfügung gestellt. Die Hypothese dieser Arbeit war, dass Hypoxie die Selenoproteinbiosynthese beeinflusst. Experimentell induzierte Hypoxie führte in humanen hepatokarzinomen Zellen zu einer verminderten Expression fast aller Selenproteinen bis auf die für Überleben und Abwehr von reaktiven Sauerstoffspezies wichtige Glutathion Peroxidase 4 (GPX4), welche auch unter hypoxischen Bedingungen stabil exprimiert wurde. Diese Umverteilung von Sec, weg von der Biosynthese des sezernierten SePP hin zur intrazellulären GPX4, wurde HIF unabhängig vermittelt. Stattdessen wurden Schlüsselenzyme der Sec-Biosynthese spezifisch herunterreguliert. Mesenchymale Stammzellen (MSC) leben im Körper unter hypoxischen Bedingungen und haben aufgrund Ihrer Plastizität ein großes regeneratives Potential. In diesem Zellmodel führte nicht Hypoxie, sondern Se-Supplementation, zu einer Herunterregulation der Selenoprtoeinbiosynthese. Dieser Effekt dürfte für die Proliferationskapazität der MSC essentiell sein. In dieser Arbeit werden diese Ergebnisse vorgestellt und vor dem Hintergrund einer Studie zu Se-Spiegeln bei Patienten mit Polytrauma diskutiert. / The essential trace element Selenium (Se) is incorporated into proteins, so called selenoproteins, in form of the 21st proteinogenic amino acid selenocysteine (Sec). Due to the unique biochemical characteristics of Sec, selenoproteins fulfill a number of important functions within the body. In humans, a profound Se deficiency predisposes to a degenerative cartilage disease and moderate Se deficiency constitutes a risk factor for a variety of diseases, such as cancer, inflammation, cognitive decline, stroke or thyroid diseases. Hypoxia occurs in a number of severe illnesses, e.g. in cancer, sepsis or trauma. The cellular transcriptional response is mediated via „Hypoxia inducible factors“ (HIF). The liver is the central organ of Se metabolism, where dietary Se is organified to Sec and distributed in form of selenoprotein P (SePP) throughout the body. This thesis tested the hypothesis that hypoxia may directly affect selenoprotein biosynthesis. In human hepatocarcinoma cells, an experimentally-induced hypoxia led to a reduction of almost all selenoproteins analyzed, with the notably exception of Glutathione Peroxidase, type 4 (GPX4). The enzyme GPX4, important for neutralizing lipid hydroperoxides, remained stably expressed under hypoxic conditions. This redistribution of Sec, away from the secreted Se transporter SePP towards the intracellular protective enzyme GPX4, was HIF independent and rather a result down-regulation of key enzymes at the bottleneck of Sec biosynthesis. Mesenchymal stem cells (MSC) survive in the human body in a hypoxic niche. Due to their great plasticity, MSC have a huge regenerative potential. In this cell model, it was not hypoxia, but rather Se supply itself, which led to a coordinated down-regulation of the whole Sec biosynthesis machinery causing diminished selenoprotein biosynthesis. In this thesis these results are presented and discussed in light of a clinical trial on the importance of Se in polytraumatic patients.
429

A contribution to the selection of suitable cells, scaffold and biomechanical environment for ligament tissue engineering / Une contribution à la sélection de cellules adaptés, biomatériaux et d’environments biomécaniques appropriés pour l’ingéniere tissulaire ligamentaire

Liu, Xing 01 July 2019 (has links)
L'ingénierie tissulaire du ligament constitue une approche prometteuse pour réparer ou remplacer un ligament endommagé. Les trois piliers essentiels de l'ingénierie tissulaire ligamentaire sont la matrice de support (aussi appelée scaffold), la source cellulaire, ainsi que l'apport de stimulations biomécaniques/biochimiques : ces trois piliers ont été partiellement étudiés par le passé dans le but de s’orienter vers une régénération ligamentaire. Dans la présente étude, le polymère synthétique poly (L-lactide-co-ε-caprolactone) (PLCL) et la soie ont été proposés et comparés comme de potentiels candidats pour la constitution d’une matrice de support. Une série de matrices tressées multicouches à base de PLCL et de soie, ainsi qu'un nouveau composite soie/PLCL ont été développés et comparés. Les caractérisations physico-chimiques et biologiques ont démontré que le PLCL et la soie constituent des candidats pertinents, tant sur les plans mécaniques que biologiques, pour la constitution d’une matrice de support. De plus, nous avons montré que le composite soie/PLCL offrait des propriétés mécaniques et une biocompatibilité accrue par rapport aux autres matrice testées, et constituait probablement le candidat le plus approprié pour l'ingénierie tissulaire du ligament. Les cellules souches mésenchymateuses (CSM) de la gelée de Wharton (WJ-MSCs) ainsi que les cellules souches mésenchymateuses de la moelle osseuse (BM-MSCs) ont été évaluées et comparées en tant que sources cellulaires potentielles pour la régénération ligamentaire. Les caractéristiques biologiques de ces cellules incluent l’adhésion cellulaire, la prolifération, la migration et la synthèse de matrice extracellulaire. Ces deux types de cellules ont montré une bonne biocompatibilité dans leurs interactions avec les matrices de support en PLCL et en soie. Aucune différence significative n'a été observée entre les WJ-MSCs et les BM-MSCs. Enfin, l'effet de la stimulation biomécanique sur la différentiation des CSM en tissu ligamentaire a été évalué par le biais d’un bioréacteur de traction-torsion. Bien que peu de cellules aient été détectées la matrice après 7 jours de stimulation, des CSM de forme allongée le long des fibres ont été détectées, ce qui permet de penser qu'il est possible de promouvoir la différenciation des biosubstituts matrice-cellules grâce à la stimulation mécanique en bioréacteur. En conclusion, cette étude démontre le potentiel prometteur de l’association de cellules souches mésenchymateuses issues de la gelée de Wharton ou de la moelle osseuse avec une matrice de support composite soie/PLCL pour la régénération ligamentaire dans le futur. / Ligament tissue engineering offers a potential approach to recover or replace injured ligament. The three essential elements that have been investigated towards ligament regeneration consist in a suitable scaffold, an adapted cell source, and the supply of biomechanical/biochemical stimulations. In the current study, synthetic polymer poly (L-lactide-co-ε-caprolactone) (PLCL) and silk have been evaluated as suitable candidates to constitute an adapted scaffold. A series of multilayer braided scaffolds based on PLCL and silk, as well as an original silk/PLCL composite scaffold, have been developed and compared. The conducted physicochemical and biological characterizations have demonstrated that both PLCL and silk constitute adapted candidate material to form ligament scaffolds from the mechanical and biological points of view. Moreover, it has been observed that silk/PLCL composite scaffold resulted in adequate mechanical properties and biocompatibility, and therefore could constitute suitable candidate scaffolds for ligament tissue engineering. Both Wharton’s Jelly mesenchymal stem cells (WJ-MSCs) and Bone marrow mesenchymal stem cells (BM-MSCs) have been evaluated to be cell source for ligament regeneration. MSCs behaviors including cell attachment, proliferation, migration and extracellular matrix synthesis have been investigated. In the present study, both MSCS showed a good biocompatibility to interact with PLCL and silk scaffolds. No significant differences have been detected between WJ-MSCs and BM-MSCs. Finally, the effect of biomechanical stimulation on MSCs differentiation towards ligament tissue has been carried out with a tension-torsion bioreactor. Although few cells were detected on scaffold after 7 days of stimulation, MSCs were observed to exhibit an elongated shape along the longitudinal direction of fibers, which may indicate that an adapted mechanical stimulation could promote MSC-scaffold constructs differentiation towards ligamentous tissue. As a conclusion, this study demonstrates the potential of WJ-MSCs and BM-MSCs combined with a new silk/PLCL composite scaffold towards ligament regeneration.
430

Der Einfluss muriner mesenchymaler Stammzellen auf murine zytokin induzierte Killerzellen in der Kokultur

Bach, Martin 30 July 2014 (has links) (PDF)
Stimulating lymphocytes with Ifn-γ, anti-CD3, and interleukin-2 promotes the proliferation of a cell population coexpressing T-lymphocyte surface antigens such as CD3, CD8a, and CD25 as well as natural killer cell markers such as NK1.1, CD49, and CD69. These cells, referred to as cytokine-induced killer cells (CIKs), display cytotoxic activity against tumour cells, even without prior antigen presentation, and offer a new cell-based approach to the treatment of malignant diseases. Because CIKs are limited in vivo, strategies to optimize in vitro culture yield are required. In the last 10 years, mesenchymal stem cells (MSCs) have gathered considerable attention. Aside from their uses in tissue engineering and as support in haematopoietic stem cell transplantations, MSCs show notable immunomodulatory characteristics, providing further possibilities for therapeutic applications. In this study, we investigated the influence of murine MSCs on proliferation, phenotype, vitality, and cytotoxicity of murine CIKs in a coculture system. We found that CIKs in coculture proliferated within 7 days, with an average growth factor of 18.84, whereas controls grew with an average factor of 3.7 in the same period. Furthermore, higher vitality was noted in cocultured CIKs than in controls. Cell phenotype was unaffected by coculture with MSCs and, notably, coculture did not impact cytotoxicity against the tumour cells analysed. The findings suggest that cell–cell contact is primarily responsible for these effects. Humoral interactions play only a minor role. Furthermore, no phenotypical MSCs were detected after coculture for 4 h, suggesting the occurrence of immune reactions between CIKs and MSCs. Further investigations with DiD-labelled MSCs revealed that the observed disappearance of MSCs appears not to be due to differentiation processes.

Page generated in 0.0267 seconds