• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 145
  • 52
  • 28
  • 25
  • 9
  • 8
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 495
  • 495
  • 495
  • 136
  • 136
  • 113
  • 106
  • 93
  • 85
  • 85
  • 81
  • 70
  • 67
  • 65
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Διερεύνηση της διεπιφάνειας κυττάρων - νανοσωλήνων άνθρακα υπό στατικές & δυναμικές συνθήκες

Κρουστάλλη, Ανθούλα 22 April 2015 (has links)
Αντικείμενο της παρούσας διατριβής, ήταν η διερεύνηση της διεπιφάνειας ανθρώπινων μεσεγχυματικών κυττάρων (Human Mesenchymal Stem Cells, hMSCs) -Νανοσωλήνων Άνθρακα Πολλαπλού Τοιχώματος (Multi Walled Carbon Nanotubes, MWCNTs) υπό στατικές και δυναμικές συνθήκες. Οι MWCNTs έχει αποδειχθεί ότι, έχουν μοναδικές ηλεκτρικές και φυσικές ιδιότητες, μηχανική αντοχή και χαμηλή πυκνότητα, χαρακτηριστικά που τους καθιστούν εξαιρετικά ελκυστικούς για το σχεδιασμό βιοϋλικών για ορθοπαιδικές εφαρμογές. Αρχικά, μελετήθηκε η βιοσυμβατότητα των hMSCs σε επιφάνειες MWCNTs, ως προς την κυτταροτοξικότητα, τη μορφολογία, τον πολλαπλασιασμό, τη διαφοροποίηση και την οργάνωση του κυτταροσκελετού. Το υπόστρωμα των MWCNTs ευνόησε την εξάπλωση των κυττάρων, προήγαγε τον πολλαπλασιασμό και προώθησε τη διαφοροποίηση των hMSCs σε οστεοβλάστες, όπως έδειξε η έκφραση αλκαλικής φωσφατάσης, οστεοποντίνης και οστεοκαλσίνης. Μελετήθηκε η γονιδιακή έκφραση των ιντεγκρινικών υποδοχέων, υπεύθυνων για την προσκόλληση των κυττάρων στους MWCNTs. Με την τεχνική του περιστρεφόμενου δίσκου, εκτιμήθηκε η δύναμη προσκόλλησης των hMSCs στους MWCNTs και η επίδραση της κάθε ιντεγκρίνης στη μεταβολή της δύναμης προσκόλλησης. Για τη διερεύνηση της απόκρισης των οστεοβλαστών στη μηχανική φόρτιση, τα προσκολλημένα κύτταρα στους MWCNTs καταπονήθηκαν για 3 και 24 ώρες, με σύστημα μηχανικής φόρτισης βασισμένο στην Αρχή Κάμψης Τεσσάρων Σημείων. Τα αποτελέσματα έδειξαν ότι, η φόρτιση επηρεάζει θετικά την έκφραση γονιδίων προσκόλλησης και δεικτών διαφοροποίησης. Επιπρόσθετα, μελετήθηκε η συμπεριφορά των hMSCs ως προς την κυτταροτοξικότητα, τον πολλαπλασιασμό, τη διαφοροποίηση, την οργάνωση του κυτταροσκελετού και την έκφραση γονιδίων προσκόλλησης, σε τροποποιημένες επιφάνειες MWCNTs με υδροξυλομάδες, καρβοξυλομάδες και αμινομάδες. Τα αποτελέσματα έδειξαν ότι, η αμινοτροποποιημένη επιφάνεια ευνόησε σημαντικά την κυτταρική συμπεριφορά σε σύγκριση με τις άλλες δύο επιφάνειες. Τέλος, μελετήθηκε η επίδραση της τοπογραφίας με χρήση κάθετα ευθυγραμμισμένων MWCNTs, σε σύγκριση με τυχαία προσανατολισμένους MWCNTs. Η απόκριση των hMSCs στους κάθετα ευθυγραμμισμένους MWCNTs ήταν καλύτερη σε σύγκριση με τους τυχαία προσανατολισμένους, τόσο ως προς τον πολλαπλασιασμό και τη διαφοροποίηση, όσο και ως προς την οργάνωση του κυτταροσκελετού. Τα αποτελέσματα της διατριβής είναι υποσχόμενα για το μελλοντικό σχεδιασμό βιοϋλικών με MWCNTs, με τελικό σκοπό την εφαρμογή σε θεραπείες στις οποίες απαιτείται ανακατασκευή του οστού. / The aim of the present study was the investigation of the interface of human Mesenchymal Stem Cells (hMSCs) – Multiwalled Carbon Nanotubes (MWCNTs), under static and dynamic conditions. MWCNTs have been proven to obtain unique electric and physical properties, mechanical strength and low density, which render them highly attractive for the design of biomaterials for orthopaedic applications. Firstly, the biocompatibility of MWCNTs was studied, in terms of hMSCs cytotoxicity, morphology, proliferation, differentiation, cytoskeleton organization and toxicity. The substrate of MWCNTs favored cell spreading, increased proliferation and promoted cell differentiation, as measured by the expression of alkaline phosphatase, osteopontin and osteocalcin. The gene expression of integrin receptors responsible for cell attachment on MWCNTs was studied. Using the Spinning Disc Technique, the attachment strength of hMSCs on MWCNTs was evaluated, as well as the impact of each integrin to the alteration of attachment strength. In order to investigate the cell response to mechanical loading, the attached cells on MWCNTs were stressed for 3 and 24 hours, using a system for mechanical loading based on the 4-point bending principle. Results showed that loading positively induces the expression of genes associated with attachment and differentiation markers. Additionally, the cell behavior concerning proliferation, differentiation, cytoskeleton organization, apoptosis and gene expression associated with attachment, was studied on MWCNTs after surface modification with hydroxyl-, carboxyl-, and amino- groups. The findings indicated that the amino- modified surface significantly favored the cell behavior, compared to the other two surfaces. Lastly, the topography effect was studied using vertically aligned MWCNTs. Cell response was found better on the vertically compared to the randomly oriented, in terms of proliferation, differentiation and cytoskeleton organization. The findings of the study are promising for the future design of biomaterials of MWCNTs, aiming for application in therapies where bone reconstruction is demanded.
452

Lokalisation, Proliferation und Differenzierung von STRO-1-positiven Zellen aus dem Geweih von Damhirschen (Dama dama) / Localization, proliferation and differentiation of STRO-1-positiv cells of antlers of fallow deer (Dama dama)

Seymour, Natascha 05 October 2010 (has links)
No description available.
453

Wirkungsweise von Bisphosphonaten auf die Expression verschiedener Knochenmarker in mesenchymalen Stammzellen der Plazenta / Effects on gene expression of different osteogenic markers in mesenchymal stem cells of human placenta

Kemper, Götz 26 October 2010 (has links)
No description available.
454

The development of heparin-based materials for tissue engineering applications to treat rotator cuff tendon injuries

Seto, Song P. 22 May 2014 (has links)
Surgical repair of torn rotator cuff tendons have a high rate of failure and does not address the underlying pathophysiology. Tissue engineering strategies, employing the use of multipotent progenitor cells or growth factors, represent potential therapies to improve the outcome of rotator cuff surgery. The use of glycosaminoglycan-based biomaterials in these therapies may enhance the effectiveness of cell and growth factor delivery techniques. Furthermore, understanding the cellular and molecular mediators in tendon overuse can help elucidate the causes of tendon degeneration. Thus the overall goals of this dissertation were to 1) develop heparin-based biomaterials to enhance cell pre-culture and maintain growth factor bioactivity and 2) characterize the histological and enzymatic changes in a supraspinatus tendon overuse model. To investigate the use of heparin in enhancing dynamic signaling, mesenchymal stem cells (MSCs) were encapsulated in heparin-containing hydrogels and evaluated for differentiation markers when cocultured with a small population of differentiated cells. To probe the effect of sulfation of heparin on the interactions with protein, selectively desulfated heparin species were synthesized and evaluated for their ability to bind and protect proteins. Finally, to develop a tendon overuse model that can become a test bed for testing future targeted therapeutics, an animal model was evaluated for tissue damage and protease activity. Together these studies represent a multi-pronged approach to understanding how tendon tissues become degenerative and for developing technologies to improve the biological fixation of tendon to bone in order to reduce the need for revision surgeries.
455

Comparison of Platelet-Rich Plasma and VEGF-Transfected Mesenchymal Stem Cells on Vascularization and Bone Formation in a Critical-Size Bone Defect

Kasten, Philip, Beverungen, Mirjam, Lorenz, Helga, Wieland, Julia, Fehr, Michael, Geiger, Florian 04 March 2014 (has links) (PDF)
Both platelet-rich plasma (PRP) and vascular endothelial growth factor (VEGF) can promote regeneration. The aim of this study was to compare the effects of these two elements on bone formation and vascularization in combination with bone marrow stromal cells (BMSC) in a critical-size bone defect in rabbits. The critical-size defects of the radius were filled with: (1) a calcium-deficient hydroxyapatite (CDHA) scaffold + phVEGF165-transfected BMSC (VEGF group), (2) CDHA and PRP, or (3) CDHA, autogenous BMSC, and PRP. As controls served: (4) the CDHA scaffold alone and (5) the CDHA scaffold and autogenous BMSC. The volume of new bone was measured by means of micro-CT scans, and vascularization was assessed in histology after 16 weeks. Bone formation was higher in the PRP + CDHA, BMSC + CDHA, and PRP + BMSC + CDHA groups than in the VEGF group (p < 0.05). VEGF transfection significantly promoted vascularization of the scaffolds in contrast to BMSC and PRP (p < 0.05), but was similar to the result of the CDHA + PRP + BMSC group. The results show that VEGF-transfected BMSC as well as the combination of PRP and BMSC improve vascularization, but bone healing was better with the combination of BMSC and PRP than with VEGF-transfected BMSC. Expression of VEGF in BMSC as a single growth factor does not seem to be as effective for bone formation as expanded BMSC alone or PRP which contains a mixture of growth factors. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
456

Spherical Individual Cell-Based Models / Sphärische Einzelzell-basierte Modelle - Limitierungen und Anwendungen

Krinner, Axel 14 July 2010 (has links) (PDF)
Over the last decade a huge amount of experimental data on biological systems has been generated by modern high-throughput methods. Aided by bioinformatics, the '-omics' (genomics, transcriptomics, proteomics, metabolomics and interactomics) have listed, quantif ed and analyzed molecular components and interactions on all levels of cellular regulation. However, a comprehensive framework, that does not only list, but links all those components, is still largely missing. The biology-based but highly interdisciplinary field of systems biology aims at such a holistic understanding of complex biological systems covering the length scales from molecules to whole organisms. Spanning the length scales, it has to integrate the data from very different fields and to bring together scientists from those fields. For linking experiments and theory, hypothesis-driven research is an indispensable concept, formulating a cycle of experiment, modeling, model predictions for new experiments and, fi nally, their experimental validation as the start of the new iteration. On the hierarchy of length scales certain unique entities can be identi fied. At the nanometer scale such functional entities are molecules and at the micrometer level these are the cells. Cells can be studied in vitro as independent individuals isolated from an organism, but their interplay and communication in vivo is crucial for tissue function. Control over such regulation mechanisms is therefore a main goal of medical research. The requirements for understanding cellular interplay also illustrate the interdisciplinarity of systems biology, because chemical, physical and biological knowledge is needed simultaneously. Following the notion of cells as the basic units of life, the focus of this thesis are mathematical multi-scale models of multi-cellular systems employing the concept of individual (or agent) based modeling (IBM). This concept accounts for the entity cell and their individuality in function and space. Motivated by experimental observations, cells are represented as elastic and adhesive spheres. Their interaction is given by a model for elastic homogeneous spheres, which has been established for analysis of the elastic response of cells, plus an adhesion term. Cell movement is modeled by an equation of motion for each cell which is based on the balance of interaction, friction and active forces on the respective cell. As a fi rst step the model was carefully examined with regard to the model assumptions, namely, spherical shape, homogeneous isotropic elastic body and apriori undirected movement. The model examination included simulations of cell sorting and compression of multicellular spheroids. Cell sorting could not be achieved with only short range adhesion. However, it sorting completed with long range interactions for small cell numbers, but failed for larger aggregates. Compression dynamics of multi-cellular spheroids was apparently reproduced qualitatively by the model. But in a more detailed survey neither the time scales nor the rounding after compression could be reproduced. Based on these results, the applications consistent with the assumed simpli cations are discussed. One already established application is colony growth in two-dimensional cell cultures. In order to model cell growth and division, a two-phase model of the cell cycle was established. In a growth phase the cell doubles its volume by stochastic increments, and in a mitotic phase it divides into two daughter cells of equal volume. Additionally, control of the cell cycle by contact inhibition is included in the model. After examination of its applicability, the presented model is used for simulations of in vitro growth of mesenchymal stem cells (MSC) and subsequent cartilage formation in multi-cellular spheroids. A main factor for both processes is the oxygen concentration. Experimental results have shown, that i) MSC grow much better in vitro at low than at high oxygen concentrations and ii) the MSC progeny harvested from low oxygen culture produce higher amounts of the cartilage components aggrecan and collagen II in multicellular spheroids than the ones from high oxygen culture. In order to model these processes, IBM was extended by a stochastic model for cellular differentiation. In this model cellular differentiation is captured phenomenologically by two additional individual properties, the degree of differentiation and the lineage or cell type, which are subject to fl uctuations, that are state and environment dependent. After fitting the model parameters to the experimental results on MSC growth in monoclonal expansion cultures at low and high oxygen concentrations, the resulting simulated cell populations were used for initialization of the simulations of cartilage formation in multi-cellular spheroids. The model nicely reproduced the experimental results on growth dynamics and the observed number of functional cells in the spheroids and suggests the following explanation for the difference between the two expansion cultures: due to the stronger pre-differentiation found after expansion in high oxygen, the plasticity of these cells is smaller and less cell adopt the chondrogenic phenotype and start to produce cartilage. Moreover, the model predicts an optimal oxygen concentration for cartilage formation independent of expansion culture and a de-differentiating effect of low oxygen culture within 24h. Because all simulations comply with the concept of hypothesis-driven research and follow closely the experimental protocols, they can easily be tested and are currently used for optimization of a bioreactor for cartilage production. Cell populations are composed of individual cells and regulation of population properties is performed by individual cell, but knowledge about individual cell fates is largely missing due to the problem of single cell tracking. The IBM modeling approach used for modeling MSC growth and differentiation generically includes information of each individual cell and is therefore perfectly suited for tackling this question. Based on the validated parameter set, the model was used to generate predictions on plasticity of single cells and related population dynamics. Single cell plasticity was quantifi ed by calculating transition times into stem cell and differentiated cell states at high and low oxygen concentrations. At low oxygen the results predict a frequent exchange between all subpopulations, while at high oxygen a quasi-deterministic differentiation is found. After quantifying the plasticity of single cells at low and high oxygen concentration, the plasticity of a cell population is addressed in a simulation closely following a regeneration experiment of populations of hematopoietic progenitor cells. In the simulation the regeneration of the distribution of differentiation states in the population is monitored after selection of subpopulations of stem cells and differentiated cells. Simulated regeneration occurs on the time scales estimated from the single cell transition times except the unexpectedly fast regeneration from differentiated cells in the high oxygen environment, which favors differentiation. The latter case emphasizes the importance of single outlier cells in such system, which in this case repopulate less differentiated states with their progeny. In general, cell proliferation and regeneration behavior are in uenced by biomechanical and geometrical properties of the environment e.g. matrix stiffness or cell density. Because in the model cells are represented as physical objects, a variation of friction is linked to cell motility. The cultures of less motile cells become denser at the same size and the effects of contact inhibition of growth more pronounced. This variation of friction coe fficients allows the comparison of cultures with varying degrees of contact inhibition regarding their differentiation structure and the results suggest, that stalled proliferation is su fficient to explain the well-known differentiation effects in confl uent colonies. In addition, the composition of the simulated stem cell pool was analyzed regarding differentiation. In contrast to the established pedigree models, where stem cell can only be produced by asymmetric division, this model predicts that most of the cells in stem cell states descend from progenitor cells of intermediate differentiation states. A more detailed analysis of single cell derived clones revealed properties that could not be described by the model so far. First, a differentiation gradient was observed in larger colonies, that was the opposite of the one predicted by the model. Second, the proliferative activity turned out to depend not only on oxygen, but also to be a property of individual clones persisting over many generations. Because the relation slow growth/pre-differentiation also holds for single cell derived clones, the general model of differentiation is extended by another heritable individual property. Motivated by the decline of proliferation and differentiation in culture and the high metabolic and epigenetic activity during cell division, each division event is assumed to de-stabilize stem cell states. Consequently, in the model the cells age in terms of cell divisions determines the fl uctuations in stem cell states and the environment the mean fl uctuation strength. Including this novel concept, that links aging to growth and differentiation dynamics, into the model reproduces the experimental results regarding differentiation gradient and persistent clonal heterogeneity. The spatial differentiation pattern can largely be explained by the spatio-temporal growth pattern of the mono-clonal cell assembly: cells close to the border of the cell assembly have undergone more cell divisions than those in the interior and therefore their stem cell states are less stable. Heterogeneity of single-cell derived clones depends on the age of the first cell in the clone. When the stem cell fluctuations equal the mean fl uctuations strength, the proliferative activity passes a maximum at a certain age due to the destabilization of stem cell states. Thereafter the proliferative activity decreases, because more time is spent in non-proliferative differentiated states. Considering the number of divisions the cells have already undergone in vivo and after the initial expansion in vitro, it can be assumed that all cells have already passed this maximum. Interestingly, the model also predicts an optimal age for directed differentiation, when cells stably differentiate, but have not lost the required plasticity. According to the model, this clonal heterogeneity may be caused purely in vitro, but hypothetical simulation of in vivo aging yielded results consistent with experiments on MSC from rats of varying age. Finally, the detailed molecular regulation mechanisms in a multi-scale tissue model of liver zonation was studied, in which the key molecular components were explicitly modeled. Hence, this model resolved the intracellular regulation in higher resolution than the above considered differentiation models which had summarized the intracellular control and differentiation mechanisms by a few phenomenological, dynamical variables. The metabolic zonation of the liver is essential for many of the complex liver functions. One of the vitally important enzymes, glutamine synthetase, (GS) is only synthesized in a strictly defi ned pattern. Experimental evidence has shown that a particular pathway, the canonical wnt pathway, controls expression of the gene for GS. A model for transport, receptor dynamics and intracellular regulation mechanism has been set up for modeling the spatio-temporal formation of this pattern. It includes membrane-bound transport of the morphogen and an enzyme kinetics approach to fibeta-catenin-regulation in the interior of the cell. As an IBM this model reproduces the results of co-culture experiments in which two-dimensional arrangements of liver cells and an epithelial liver cell line give rise to different patterns of GS synthesis. The two main predictions of the model are: First, GS-synthesis requires a certain local cell number of wnt releasing cells. And second, a simple inversion of geometry explains the difference between the specifi c GS pattern found in the liver and in the co-culture experiments. Summarizing the results presented in this thesis, it can be concluded that properties such as the occurrence of memory effects and single cells pursuing fates far off the population average could be essential for biological function. Considering the role of single cells in many tissues, the use of individual based methods, that are able to take such effects into account, can be expected to be a very valuable tool for the problems of systems biology.
457

Characterization of bone marrow stromal clonal populations derived from osteoarthritis patients

Mareddy, Shobha R. January 2008 (has links)
This work is concerned with the characterization of mesenchymal stem cells (MSC) specifically from bone marrow samples derived from patients with osteoarthritis (OA). The multilineage potential of mesenchymal stem cells as well as their ease of exvivo expansion makes these cells an attractive therapeutic tool for applications such as autologous transplantation and tissue engineering. Bone marrow is considered a source of MSC. However, there is a general assumption that the occurrence of MSCs and their activity in bone marrow diminishes with age and disease. This prompted us to isolate and identify multipotential and self-renewing cells from patients with the degenerative disease osteoarthritis, with the view of using these cells for autologous cell therapies. It is therefore of great potential benefit to investigate the isolation and characterization of stem cell/progenitors from bone marrow samples of patients with osteoarthritis in greater detail. We employed a single cell clone culture method in order to develop clonal cell populations from three bone marrow samples and characterized them based on their proliferation and differentiation capabilities. The clonal populations were grouped into fast-growing and slow-growing clones based on their proliferation rates. The fastgrowing clones displayed 20-30% greater proliferation rate than the slow-growing clones. The study also revealed that the proliferation rates were directly proportional to their differentiation capacities. Most of the fast-growing clones were found to be tripotential for osteogenic, chondrogenic and adipogenic lineages, whereas the slow growing clones were either uni or bipotential. Flow cytometry analysis for the phenotype determination using putative MSC surface markers did not reveal any difference between the two clonal populations indicating a need for further molecular studies. Two approaches were employed to further investigate the molecular processes involved in the existence of such varying populations. In the first method gene expression studies were performed between the fast-growing (n=3) and slow-growing (n=3) clonal populations to identify potential genetic markers associated with cell 'sternness' using the Stem Cell RT2 ProfilerTM PCR Array comprising a series of 84 genes related to stem cell pathways. Ten genes were identified to be commonly and significantly over represented in the fast-growing stem cell clones when compared to slow-growing clones. This included expression of transcripts beyond MSC lineage specification such as SOX2, NOTCH1 and FOXA2 which signified that stem cell maintenance requires a coordinated regulation by multiple signalling pathways. The second study involved an extensive protein expression profiling of the fast growing (n=2) and slow growing (n=2) clonal populations using off-line Two Dimensional Liquid Chromatography (2D-LC)/Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry (MS). A total of 67 proteins were identified, of which 11 were expressed at significantly different levels between the subpopulations. Protein ontology revealed these proteins to be associated with cellular organization, cytokinesis, signal transduction, energy pathways and cell stress response. Of particular interest was the differential presentation of the proteins calmodulin, tropomyosin and caldesmon between fast- and slow-growing clones. Based on their reported roles in the regulation of cell proliferation and maintenance of cell integrity, we draw an association between their expression and the altered status in which the subpopulations exist. Based on our observations, these proteins may be prospective molecular markers to distinguish between the fast-growing and slow-growing subpopulations. In summary, this study demonstrated the existence of potential stem cells of therapeutic importance in spite of a supposedly smaller stem cell compartment in patients with osteoarthritis. Furthermore, the differentially expressed genes between the sub-populations highlight the 'sternness' of the potential clones, an observation supported by the expression of proteins which act as effective modulators in the maintenance of cell integrity and cell cycle regulation. This study provides a basis for more detailed investigations in search of selective cell surface markers
458

Pharmacologically active microcarriers delivering brainderived neurotrophic factor combined to adult mesenchymal stem cells : novel approach for the treatment of spinal cord injury / Des microporteurs pharmacologiquement actifs delivrant le facteur neurotrophique dérivé du cerveau combiné à des cellules souches mésenchymateuses adultes : nouvelle approche pour le traitement des lésions de la moelle épinière

Kandalam, Saikrishna 05 April 2017 (has links)
Un traumatisme de la moelle épinière (TME) est une condition dévastatrice entraînant la perte permanente de fonctions neuronales. L’objectif de cette thèse est de formuler de microsupports pharmacologiquement actif (MPAs) avec une surface de fibronectine (FN), libérant le« brain-derived neurotrophic factor » (BDNF) de façon controlée. Nous voulons combiner ce système avec des cellules souches mésenchymateuses (CSMs) pour la réparation de TME. Le BDNF nanoprécipité a été encapsulé dans les FN-MPAs et le profil de libération in vitro a été évaluée. Elle a montré une libération biphasique et prolongée de BDNF bioactifs. Nous avons combinés des cellules souches humaines mésenchymateuse issues de la moelle osseuse adulte (cellules MIAMI) et FN-MPAs avec un hydrogel non-toxique silanisés-hydroxypropylméthylcellulose (Si-HPMC). Nous avons démontré que les FN-MPAs et le Si-HPMC augmentait l'expression de marqueurs neuraux/neuronaux de cellules MIAMI après 1 semaine. En outre, l'environnement 3D (hydrogel ou FN-MPAs) a augmenté le sécrétome thérapeutique de cellules MIAMI. Pour avoir un système facile à appliquer en clinique, nous avons choisi d’utiliser les cellules souches de la papille apicale (SCAP) et FN-MPAs libérant ou non du BDNF pour la thérapie du TME. Plus de 90 % du SCAP complexée avec FN-MPAs (libérant ou pas BDNF) demeurent viables pendant 7 jours et il y a augmentation de l'expression des gènes neuronaux/oligodendrogliaux in vitro. La récupération de la fonction locomotrice a été significativement améliorée après la transplantation du SCAP complexée avec FN-MPAs-BDNF avec une coordination cohérente du membre postérieur après 28 jours de traitement. / Traumatic spinal cord injury (SCI) is a devastating condition resulting in permanent loss of neural functions. The objective of this thesis is to develop pharmacologically active microcarriers (PAMs) with a fibronectin (FN) surface that deliver biologically active brain derived neurotrophic factor (BDNF) in a controlled manner. We want to combine this system with adult mesenchymal stem cells (MSCs) for SCI repair. The nanoprecipitated BDNF was encapsulated in FN-PAMs and the in vitro release profile was evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We combined human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and FN-PAMs with an injectable non-toxic silanized-hydroxypropylmethylcellulose (Si-HPMC) hydrogel. We demonstrated that FN-PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1 week. Moreover, the 3D environment (FN-PAMs or hydrogel) enhanced the therapeutic MIAMI cell secretome. To have a clinically translatable system, we chose to use stem cells of the apical papilla (SCAP) and FNPAMs releasing or not BDNF for SCI therapy. More than 90% of SCAP complexed with FN-PAMs (releasing or not BDNF) remained viable for 7 days and an increased neuronal-oligodendroglial gene expression in vitro. The recovery of locomotor function was significantly improved after transplantation of SCAP complexed with FN-PAMs-BDNF with frequent to consistent forelimb-hindlimb coordination after 28 days of treatment.
459

O uso de células-tronco adultas humanas na recuperação funcional da lesão medular trumática em ratas Wistar

Rodrigues, Luciano Palmeiro January 2011 (has links)
A lesão medular traumática é uma patologia incapacitante, ainda sem tratamento eficaz. As terapias celulares representam uma nova estratégia para o tratamento destas lesões. As células-tronco adultas são fontes potenciais para o transplante celular com o objetivo de minimizar a lesão e promover a recuperação de tecidos lesados, como a medula espinhal. O objetivo desta tese foi avaliar a eficácia do transplante de células-tronco adultas na recuperação funcional e regeneração da lesão medular traumática em modelo experimental de lesão medular contusa em ratas fêmeas Wistar. Os principais objetivos foram: a) comparar os efeitos do transplante da fração mononuclear de sangue de cordão umbilical humano e de células-tronco mesenquimais dos vasos da parede do cordão umbilical humano; b) determinar a janela terapêutica deste tipo de intervenção, comparando os implantes de células- tronco realizados 1 hora, 24 horas e 9 dias após a lesão; c) demonstrar a possível diferenciação das células-tronco implantadas, bem como sua integração no tecido lesado. Os resultados obtidos demonstraram que o transplante de células foi mais eficaz para a recuperação funcional da lesão medular em ratas Wistar quando realizado pela via de administração local 1h após a lesão, quando comparado com a administração na cisterna magna e a aplicação 9 dias a lesão. O tratamento com a fração de células mononucleares ou com as células-tronco mesenquimais do sangue do cordão umbilical 24h após a lesão, não apresentou resultado funcional significativo.Observou-se a neuroproteção do tecido medular quando foi realizado o transplante de células-tronco mesenquimais 1h após a lesão medular. As células humanas transplantadas migraram e sobreviveram no local da lesão quando administradas na cisterna magna ou quando administradas diretamente no local da lesão, porém não se diferenciaram em células gliais ou neurônios. Concluímos que o transplante de células-tronco adultas promoveu a recuperação funcional após a lesão medular contusa, principalmente quando realizado 1h após a lesão diretamente no local da lesão. Apesar das células transplantadas sobreviverem na área da lesão, não foi evidenciada diferenciação celular. / Spinal cord injury is a debilitating disease and yet no effective treatment is available. In this framework cell therapy represents a new strategy to treat this condition. Adult stem cells are potential sources for cell transplantation in order to minimize injury and promote the recovery of damaged tissues, such as the spinal cord. The purpose of this Thesis was to evaluate the action of adult stem cells in the regeneration and functional recovery of spinal cord injury in experimental contusion spinal cord injury in female Wistar rats. Main goals were: a) to compare the effects of transplantation of the mononuclear cells of human umbilical cord blood and mesenchymal stem cells of the vessel wall of human umbilical cord; b) to determine the therapeutic window of this type of intervention, comparing the stem cell implants performed 1 hour, 24 hours and 9 days after injury; c) to demonstrate the possible differentiation of cells implanted, as well as their integration into the damaged tissue. Results reported demonstrate that the transplantation of stem cells was more effective for functional recovery of spinal cord injury when performed into the site of the lesion 1 h after injury, as compared with administration in the cisterna magna 9 days after injury. Treatment with mononuclear cells and mesenchymal cells from umbilical cord blood 24 hours after injury, not showed functional outcome. Neuroprotection was observed when mesenchymal stem cells were transplanted 1 hour after spinal cord injury. The transplanted human cells survived and migrated to the site of injury either when administered in the cisterna magna or directly onto the injury site, but did not differentiated into glial cells or neurons. It is suggested that the transplantation of adult stem cells promotes functional recovery after spinal cord injury when performed 1 hour after injury directly at the injury site, however differentiation of transplanted cells was not detected.
460

Užití biologických materiálů k náhradě tkání v plastické chirurgii / Use of biological materials for tissue substitution in plastic surgery

Měšťák, Ondřej January 2014 (has links)
Užití biologických materiálů k náhradě tkání v plastické chirurgii ! Abstrakt v angličtině Background: Biological meshes are biomaterials consisted of extracellular matrix and used in surgery particularly for hernia treatment or thoracic wall reconstruction. They are capable of vascularization, that decreases risk of infection, expecially when used in contaminated fields. This study compared the strength of incorporation and biocompatibility of two porcine-derived grafts (cross-linked and non-cross-linked) in a rat hernia model. In addition, we hypothesized that combination of extracellular matrices with autologous mesenchymal stem cells used for hernia repair would result in increased vascularization and increased strength of incorporation. Methods: Standardized 2 x 4 cm fascial defect was created in 42 Wistar rats and repaired with a cross-linked or a non-cross-linked graft either enriched or non-enriched with stem cells. The rats were sacrificed 3, 6 and 12 months later. The strength of incorporation, vascularization, cellular invasion, foreign body reaction and capsule formation were evaluated. Results: Comparison of stem cell enriched and non-enriched groups showed no significant differences in the capsule thickness, foreign body reaction, cellularization or vascularization. In the non-cross-linked...

Page generated in 0.0287 seconds