481 |
Differentiation and Activity of Murine Derived Stromal Osteoblasts After Electromagnetic Wave StimulationWu, Jennifer L. January 2022 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Elimination of bacteria and active infection within an infected root canal system is one of the primary objectives of nonsurgical root canal treatment. One of the measures of successful root canal treatment is subsequent bone healing of periapical lesions caused by previous infection. A previous study by Yumoto et al. showed that electromagnetic wave stimulation can increase proliferation of osteoblastic cells with no cytotoxicity, and it can also up-regulate growth factors such as vascular endothelial growth factor and platelet-derived growth factor.18 They also showed increased proliferation of an immortalized osteoblastic MC3T3-E1 cell line 3 days following electromagnetic stimulation (EMS).18 Previously, Pauly et al. found increased alkaline phosphatase (ALP) activity with 10 mA EMS application to primary murine calvaria-derived osteoblastic cells with 5 pulses at 1 second per pulse, but no significant differences were found for MTS proliferation nor mineral deposition compared to a negative control group.82 Optimization of the different variables including post-treatment incubation time, current delivery, and number of pulses per treatment may be necessary to improve osteogenic activity. The use of mesenchymal stem cells from murine bone marrow may also offer a physiologically relevant model for osteoblastic regeneration of periapical lesions.
Objectives: The goal of this study was to investigate and optimize the effects of electromagnetic wave stimulation (EMS) on murine bone marrow mesenchymal stem cells (MSCs) by evaluating the proliferation and differentiation of the cells after exposure to different EMS treatment regimens.
Materials and Methods: 5 x104 stromal osteoblasts (SOBs) were cultured in 24-well plates in α-MEM containing 10% fetal bovine serum. Cells were then subjected to pulsed EMS treatments of 1 mA, 10 mA, and 50 mA. EMS was generated using an electromagnetic apical treatment (EMAT) device created by J. Morita MFG Corp. Proliferation was assessed via MTS assay 1 days after treatment. For osteogenic differentiation, ascorbic acid and β-glycerol phosphate were added to the culture media, and SOBs were cultured for 14 days. Afterwards, alkaline phosphatase (ALP) activity and Alizarin-red S mineral deposition were quantified as measures of osteoblast activity. Cells grown in osteogenic media without EMS treatment served as the negative control.
Results: Although MSC proliferation was unaffected by different EMS treatment regimens, 50 mA EMS resulted in a decrease in ALP activity and mineral deposition by osteoblasts.
Conclusions: Our findings suggest bone healing by EMS may involve a different cellular mechanism, that is not reproduced in vitro in our studies. Utilizing different amperage and EMS regimens may improve osteogenic differentiation.
|
482 |
Traitement de l'insuffisance cardiaque : de la transplantation à la thérapie cellulaireNguyen, Anthony 08 1900 (has links)
La transplantation demeure le traitement de choix de l’insuffisance cardiaque (IC) et ce malgré les récents progrès des techniques de support d’assistance mécanique. Une amélioration considérable de la prévention et du traitement du rejet aigu a été réalisée ces 20 dernières années. Cependant, le succès à long terme des transplantations d’organes a été peu modifié : il est toujours compromis par la survenue d'une dysfonction chronique du greffon. Ainsi, l'avenir des transplantés cardiaques demeure sombre et représente un fardeau médical avec un impact socioéconomique important. Toutefois, la recherche a récemment mis en avant l'énorme potentiel de régénération des cellules souches (CS) et représenterait une nouvelle avenue thérapeutique pour les patients souffrant d’IC. Une meilleure compréhension des processus biologiques des CS et de leur interaction avec le cœur transplanté, permettrait d’exploiter pleinement leur potentiel de réparation cardiaque. Le but de cette thèse est d’explorer les différents aspects du traitement de l’IC en 2020. Les hypothèses proposées dans cette thèse sont les suivantes : (1) les excellents résultats obtenus (>20 ans de survie) chez près d’1/3 des patients greffés lors de la 1ère décade de notre expérience à ICM serait difficile à obtenir de nos jours à la vue de l’évolution d’une population plus malade et plus âgée; (2) le cœur artificiel total (CAT) temporaire Syncardia permet d’amener des patients en insuffisance cardiaque terminale à la greffe de façon satisfaisante; (3) la thérapie cellulaire, plus spécifiquement les CS d’origine adipeuse (ASC) sous forme sphéroïdes, permet de diminuer l’impact de la vasculopathie du greffon cardiaque; et (4) l’effet paracrine des ASC permet une diminution de l’inflammation dans un modèle expérimental de péritonite chez le rat. / Transplantation remains the preferred treatment for heart failure (HF) despite recent advances in mechanical support devices. A considerable improvement in the prevention and treatment of acute rejection has been achieved over the past 20 years. However, the long-term survival of organ transplants has not been changed: it is still compromised by the occurrence of chronic graft dysfunction. Thus, the future of cardiac transplant patients remains bleak and represents a medical burden with a significant socio-economic impact. However, research has recently highlighted the potential for regeneration of stem cells (SC) and would represent a new therapeutic avenue for patients with HF. A better understanding of the biological processes of SC and their interaction with the transplanted heart would allow them to fully exploit their cardiac repair potential. The aim of this thesis is to explore the various aspects of the treatment of HF in 2020. The hypotheses proposed in this thesis are as follows: (1) the excellent results obtained (> 20 years of survival) in almost 1/3 of the patients transplanted during the 1st decade of our experience at ICM would be difficult to obtain from our days at the sight of the evolution of a sicker and older population; (2) the temporary Syncardia total artificial heart (CAT) allows patients with end-stage heart failure to be transplanted satisfactorily; (3) cell therapy, more specifically CS of adipose origin (ASC) cultured as spheroid, reduce the impact of cardiac allograft vasculopathy (CAV); and (4) the paracrine effect of ASCs reduces inflammation in a rat experimental model of peritonitis.
|
483 |
Development and Commercialization of Menstrual Blood Stem Cells BankingSethia, Pavan P. 02 May 2011 (has links)
No description available.
|
484 |
Identification and characterisation of epigenetic mechanisms in osteoblast differentiation of human mesenchymal stem cellsKramm, Anneke January 2014 (has links)
A major therapeutic challenge in musculoskeletal regenerative medicine is how to effectively replenish bone tissue lost due to pathological conditions such as fracture, osteoporosis, or rheumatoid arthritis. Mesenchymal stem cells are currently investigated for applications in bone-tissue engineering and human bone marrow-derived mesenchymal stem cells (hMSCs) could be a promising source for generation of tissue-engineered bone. However, the therapeutic potential of MSCs has not been fully exploited due to a lack of knowledge regarding the identity, nature, and differentiation of hMSCs. Epigenetic mechanisms regulating the chromatin structure as well as specific gene transcription are crucial in determination of stem cell differentiation. With the aim to systematically identify epigenetic factors that modulate MSC differentiation, the work in this thesis encompasses an approach to identify epigenetic mechanisms underlying, initiating, and promoting osteoblast differentiation, and the investigation of individual epigenetic modulators. Various osteogenic inducers were validated for differentiation of MSCs and an assay allowing assessment of differentiation outcome was developed. This assay was subsequently employed in knockdown experiments with lentiviral short hairpin RNAs and inhibitor screens with small molecules targeting putative druggable epigenetic modulator classes. This approach identified around 100 epigenetic modulator candidates involved in osteoblast differentiation, of these candidates approximately 2/3 downregulated and 1/3 upregulated alkaline phosphatase (ALP) activity. Serving as a proof-of-concept, orthogonal validation experiments employing locked nucleic acid (LNA) knockdown were performed to validate a subset of candidates. Two identified target genes were selected for further investigation. Bromodomain-containing protein 4 (BRD4) was identified as one component of epigenetic regulation; its inhibition led to a decrease in ALP expression, downregulation of key osteoblast transcription factors Runx2 and Osterix, as well as impaired bone matrix formation. Knockdown of lysine (K)-specific demethylase 1A (KDM1A/LSD1) upregulated ALP activity and treatment with a small molecule inhibitor targeting KDM1A led to an increase in ALP, RUNX2, and bone sialoprotein expression. Intriguingly, in a transgenic mouse model overexpressing Kdm1a a decrease in bone volume and bone mineral density was observed, thus supporting the hypothesis that KDM1A is a central regulator of osteoblast differentiation.
|
485 |
Stratégies cellulaires et environnementales pour le développement d’un substitut osseux prévascularisé / Cellular and environmental strategies for the development of a prevascularized bone subsituteWillemin, Anne-Sophie 21 September 2018 (has links)
En cas de pertes de substances osseuses de grande étendue, la capacité naturelle de réparation du tissu osseux n’est pas suffisante et nécessite d’être assistée. La greffe d’os autologue constitue actuellement la référence. Cependant, cette thérapeutique présente tout de même des inconvénients qui ont entrainé le développement de substituts osseux. Mais, aucun matériau à ce jour ne peut remplacer totalement l’os autologue, en raison notamment de la difficulté à recréer un système vasculaire fonctionnel au niveau du site lésé. Depuis quelques années, les espoirs se tournent vers la création d’un substitut osseux prévascularisé afin de pallier la principale limite des alternatives actuelles : l’établissement d’un réseau vasculaire au sein de ce biomatériau. Notre projet vise à évaluer l’effet stimulateur d’un composé naturel, les principes actifs de la nacre solubles dans l’éthanol (appelé Ethanol Soluble Matrix, ESM), à la fois sur les capacités angiogéniques de cellules de la lignée endothéliale et sur la différenciation ostéogénique de cellules souches mésenchymateuses (CSM) avec comme objectif le développement d’un substitut osseux prévascularisé. Dans un premier temps, nous avons montré que l’ESM stimulait les capacités angiogéniques des cellules de la lignée endothéliale : cellules endothéliales matures (HUVECs, cellules endothéliales issues de la veine ombilicale humaine) et cellules progénitrices endothéliales (CPEs) issues de sang de cordon. L'ESM, utilisé à la concentration de 200µg/mL, a permis de dépasser les résultats obtenus (expression génique et test fonctionnel) avec le milieu de culture de référence des CPEs : l’EGM-2 (Endothelial Growth Medium). Nous avons ensuite mis en évidence que l’ESM exerçait un effet stimulateur également sur les CSMs en augmentant l’expression de marqueurs spécifiques des chondrocytes et des chondrocytes hypertrophiques, suggérant une orientation de ces cellules vers une ossification endochondrale. En parallèle de ces travaux, nous avons étudié l’effet paracrine des CSMs sur les cellules de la lignée endothéliale, HUVECs et CPEs. Les vésicules extracellulaires de taille nanométrique (nEVs) ont montré leur capacité à induire une stimulation in vitro de la formation de réseaux vasculaires et de l’expression de gènes endothéliaux. Ces résultats encourageants soulignent la faisabilité de l’utilisation de l’ESM en tant que stimulus à la fois de l’angiogenèse des CPEs et de l’ostéogenèse des CSMs. Ce stimulus pourrait être associé aux nEVs issues de CSMs et aux CPEs au sein d’une matrice tridimensionnelle pour développer un substitut osseux prévascularisé / In case of critical-sized defects, the bone tissue ability of natural healing is not sufficient and needs to be assisted. The autologous bone graft is currently the gold standard. However, this solution has drawbacks that have led to the development of bone substitutes. Nowadays, no substitute is able to supply autogenous bone, due to the difficulties to mimic the vascular system. In recent years, the hopes are focusing on the creation of a prevascularized bone substitute to overcome the main limitation of current alternatives: the creation of a functional vascular network inside the substitute. Our project aims to evaluate the stimulating effect of a natural compound, the nacre extracts called Ethanol Soluble Matrix (ESM), both on the angiogenic abilities of endothelial cell lineage and on the osteogenic differentiation of mesenchymal stem cells (MSCs) to develop a pre-vascularized bone substitute. First, we showed that ESM stimulates the angiogenic potential of two types of endothelial cells: mature endothelial cells (HUVECs, human umbilical vein endothelial cells) and endothelial progenitor cells (EPCs) from cord blood. The ESM, used at the concentration of 200µg/mL, exceeded results obtained with the reference culture medium of EPCs: the EGM-2 (Endothelial Growth Medium). Then, we demonstrated that ESM also exerted a stimulating effect on MSC by increasing the expression of chondrocyte and hypertrophic chondrocyte specific markers, suggesting an orientation of these cells towards endochondral ossification. In line with this work, we studied the paracrine effect of MSCs on endothelial cell lineage, HUVECs and EPCs. Nanoscale extracellular vesicles (nEVs) have been shown to induce an in vitro stimulation of the vascular network formation and of the endothelial gene expression. These encouraging results highlight the feasibility of using ESM as a stimulus for both angiogenesis of EPCs and osteogenesis of MSCs. This stimulus could be associated with MSC-derived nEVs and EPCs within a three-dimensional matrix to develop a pre-vascularized bone substitute
|
486 |
Untersuchungen zum Einfluss von artifiziellen extrazellulären Matrizes und elektrischen Feldern auf humane mesenchymale Stammzellen / Influence of artificial extracellular matrices and electric fields on human mesenchymal stem cellsHeß, Ricarda 31 July 2013 (has links) (PDF)
Eine bevorzugte Zellquelle für den Einsatz im Tissue Engineering sind mesenchymale Stammzellen (MSZ). Diese besitzen, neben einer hohen Proliferationsrate, die Fähigkeit, sich in verschiedene Zellen des mesodermen Ursprungs und in die entsprechenden Gewebetypen zu entwickeln. Um ein funktionales Gewebe zu erhalten ist es Ziel, sich bereits in vitro den in vivo Bedingungen anzunähern. Hierbei spielen neben der dreidimensionalen Struktur der Scaffolds auch die biochemische Mikroumgebung der Zellen in Form der unlöslichen extrazellulären Matrix (EZM) und den löslichen Mediatorproteinen wie Wachstums- und Differenzierungsfaktoren, sowie die physikalische Stimulation der Zellen eine wichtige Rolle. Während sich gegenwärtige Untersuchungen im TE vorwiegend mit den alleinigen Einflussfaktoren beschäftigen, verfolgt die vorliegende Arbeit das Ziel, die Auswirkungen kombinierter Stimuli durch Verwendung einer artifiziellen EZM, bestehend aus definierten Komponenten der nativen EZM, und physikalischer Stimuli durch elektrische Felder zu untersuchen. Letzteres erfolgte mit einem innerhalb der Arbeitsgruppe neu entwickelten System, dass die Stimulation von Zellen mit ausschließlich elektrischen Feldern, ohne störende Nebeneinflüsse, erlaubt.
|
487 |
Developmental Strategies to Address Prosthetic Infection and Magneto-Responsive Biomaterials for Orthopaedic ApplicationsSunil Kumar, B January 2015 (has links) (PDF)
The issue of prosthetic infection leading to implant failure due to the formation of bacterial biofilms on biomaterial surfaces has been widely recognized as a major issue, often leading to revision surgery. The growing number of patients requiring synthetic biomaterials as implants is on the rise and so is the risk of infection arising from pre/peri-/post-operative surgical procedures. Traditional antibiotic treatment has led to the emergence of bacterial drug resistance. Therefore, the development of novel bactericidal methods to combat drug resistant microbial pathogens is the need of the hour. The first part of the thesis is an attempt to address prosthetic infection by the development of novel ultrasmall gold nanoparticles (AuNPs) which are cytocompatible and present a therapeutic dosage window for eliciting antimicrobial property. Towards this end, ultrasmall AuNPs with 0.8 nm and 1.4 nm gold core sizes, stabilized by monosulphonated triphenylphosphine ligand shells were synthesized. Such intricately designed AuNPs with ultrasmall gold cores and phosphine-based ligand chemistry were demonstrated to
be highly potent bactericidal agents against staphylococci, the most common human pathogen causing biomaterial associated infection. The antibacterial efficacy of these AuNPs was significant even in mature staphylococcal biofilms. In another study, the application of high strength pulse magnetic fields (1-4 Tesla) was examined for bacterial growth inactivation in vitro. A magnetic field strength dependent decrease in bacterial viability with a concomitant increase in the production of reactive oxygen species (ROS) and longer doubling times were recorded. The mechanism of action was explained through an analytical model which involves ion-transport interference of essential ions like Ca2+ and Mg2+ and disruption of FeS clusters leading to inactivation of bacterial redox enzymes. On the contrary, such high magnetic fields did not pose any detrimental effects to eukaryotic cells under similar exposure. Additionally, the potency of low intensity direct current electric field (DC EF: 1V/cm) against biofilm formation by methicillin resistant Staphylococcus aureus (MRSA) was explored on antimicrobial surfaces of hydroxyapatite and Zinc oxide (HA-xZnO; x = 0, 5, 7.5 and 10 wt%). An EF exposure time dependent decline in the viability and stability of MRSA biofilms were noted. Further, EF treatment resulted in bacterial membrane depolarization and reduced biofilm formation on HA-ZnO composites, independent of the substrate composition. In summary, the above three studies were cases of the developmental methods to address prothetic infection.
The second part of the thesis is focused on the development of magneto-responsive biomaterials as implants for orthopaedic applications. Under this category, the sintering/ hot pressing of hydroxyapatite-magnetite (HA-xFe3O4; x = 0, 5, 10, 20 and 40 wt%) powders in oxidizing and inert atmospheres was carried out and the resulting phases and microstructure were characterized. A detailed analysis of the phase assemblage by Rietveld refinement of the X-ray diffraction (XRD) data and Mössbauer spectroscopy revealed the major retention of Fe3O4 along with wustite (FeO) formation under reducing conditions while hematite (α-Fe2O3) was the oxidized product of conventional sintering in ambient atmosphere. A good correlation between the unit cell volume increases in HA observed from Rietveld refinements and Fe incorporation into the apatite lattice from Mössbauer spectral parameters was evident. Further, the Mössbauer data analysis indicated a preferential occupancy of Fe at the Ca(1) site under oxidizing conditions and Ca(2) site in inert atmosphere. The above phase analyses were further confirmed by X-ray photoelectron spectroscopy (XPS), Infrared spectroscopy (FT-IR) and CHN analysis. The microstructure of the hot-pressed samples observed under transmission electron microscope (TEM) divulged similar phases as deduced from XRD as well as the formation of translational Moire fringe patterns due to inference of overlapping crystal planes of HA and Fe3O4 in the HA-40 wt% composite. Such translational Moire fringes suggest a preferred arrangement and orientation of the crystallites resulting from hot-pressing, which correlated well with the room temperature magnetic measurements made with the help of a vibrating sample magnetometer (VSM). The compositional similarity of Fe doping in HA to that of the tooth enamel and bone presents these HA-Fe3O4 composites as potent dental/ orthopaedic implant materials.
In the conclusive study, the hot-pressed HA-xFe3O4 composites were tested for their efficacy in supporting the osteogenesis of human mesenchymal stem cells (hMSCs) assisted by intermittent static magnetic field exposure. The magneto-responsive substrates were applied as platforms for the culture of hMSCs and the effect of static magnetic field (SMF) exposure on the viability, proliferation and differentiation of hMSCs were elucidated. With a mild compromise in viability, SMF triggered the osteogenic differentiation of hMSCs mediated by proliferative arrest in the G0/G1 phase and elevated intracellular calcium levels. The early bone marker genes - Runx2, Col IA and ALP were significantly up regulated upon SMF exposure on pure HA and HA-Fe3O4
composites. Further, the late osteogenic markers – OCN and OPN were detected exclusively in the HA-xFe3O4 (x = 10 and 40 wt%) composites. Matrix mineralization was enhanced and CaP nodules were detected on similar SMF treated HA-Fe3O4 composites. A substrate magnetization and time dependent modulation of gene expression was recorded which corroborated well with the temporal trending of osteogenic genes during bone development. In conclusion, substrate magnetization can be applied as a tool to modulate the behavior of stem cells and direct them towards osteogenic lineage. Such a pertinent combination of substrate magnetization and external magnetic field stimulation can be applied synergistically for stem cell based bone tissue engineering applications.
|
488 |
Tunable hydrogels for pancreatic tissue engineeringRaza, Asad 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Type I diabetes is an autoimmune disorder characterized by the loss of insulin producing islet cell mass. While daily insulin injection provides an easy means of glycemic control, it does not prevent long-term complications associated with diabetes. Islet transplantation has been suggested as a permanent cure for type 1 diabetes. However, the recurrence of host immunity and shortage of donor islets hinder the prevalence of islet transplantation. Biomaterial strategies provide an alternative route to solving the problems associated with host immune response and shortage of donor islets. One highly recognized platform for achieving these goals are hydrogels, which are hydrophilic crosslinked polymers with tissue-like elasticity and high permeability. Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives are increasingly used for a variety of tissue engineering applications, including encapsulation of pancreatic islets and serving as a material platform for pseudo-islet differentiation. PEG hydrogels formed by mild and rapid thiol-ene photo-click reactions are particularly useful for studying cell behaviors in three-dimension (3D). Thiol-ene PEG-based hydrogels can be rendered biodegradable if appropriate macromer and cross-linker chemistry is employed. However, the influence of hydrogel matrix properties on the survival, growth, and morphogenesis of cells in 3D has not been fully evaluated. This thesis aims at using norbornene-functionalized PEG macromers to prepare thiol-ene hydrogels with various stiffness and degradability, from which to study the influence of hydrogel properties on pancreatic cell fate processes in 3D. Toward establishing an adaptable hydrogel platform
for pancreatic tissue engineering, this thesis systematically studies the influence of hydrogel properties on encapsulated endocrine cells (e.g., MIN6 beta-cells) and exocrine cells (PANC-1 cells), as well as human mesenchymal stem cells (hMSC). It was found that thiol-ene photo-click hydrogels provide a cytocompatible environment for 3D culture of these cells. However, cell viability was negatively affected in hydrogels with higher cross-linking density. In contrast to a monolayer when cultured on a 2D surface, cells with epithelial characteristic formed clusters and cells with mesenchymal features retained single cell morphology in 3D. Although cells survived in all hydrogel formulations studied, the degree of proliferation, and the size and morphology of cell clusters formed in 3D were significantly influenced by hydrogel matrix compositions. For example: encapsulating cells in hydrogels formed by hydrolytically degradable macromer positively influenced cell survival indicated by increased proliferation. In addition, when cells were encapsulated in thiol-ene gels lacking cell-adhesive motifs, hydrolytic gel degradation promoted their survival and proliferation. Further, adjusting peptide crosslinker type and immobilized ECM-mimetic bioactive cues provide control over cell fate by determining whether observed cellular morphogenesis is cell-mediated or matrix-controlled. These fundamental studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for pancreatic tissue engineering
|
489 |
Step-growth thiol-ene photopolymerization to form degradable, cytocompatible and multi-structural hydrogelsShih, Han 17 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hydrogels prepared from photopolymerization have been used for a variety of tissue engineering and controlled release applications. Polymeric biomaterials with high cytocompatibility, versatile degradation behaviors, and diverse material properties are particularly useful in studying cell fate processes. In recent years, step-growth thiol-ene photochemistry has been utilized to form cytocompatible hydrogels for tissue engineering applications. This radical-mediated gelation scheme utilizes norbornene functionalized multi-arm poly(ethylene glycol) (PEGNB) as the macromer and di-thiol containing molecules as the crosslinkers to form chemically crosslinked hydrogels. While the gelation mechanism was well-described in the literature, the network properties and degradation behaviors of these hydrogels have not been fully characterized. In addition, existing thiol-ene photopolymerizations often used type I photoinitiators in conjunction with an ultraviolet (UV) light source to initiate gelation. The use of cleavage type initiators and UV light often raises biosafety concerns. The first objective of this thesis was to understand the gelation and degradation properties of thiol-ene hydrogels. In this regard, two types of step-growth hydrogels were compared, namely thiol-ene hydrogels and Michael-type addition hydrogels. Between these two step-growth gel systems, it was found that thiol-ene click reactions formed hydrogels with higher crosslinking efficiency. However, thiol-ene hydrogels still contained significant network non-ideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEGNB macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, it was found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network crosslinking. In an attempt to manipulate network crosslinking and degradation rate of thiol-ene hydrogels, different macromer contents and peptide crosslinkers with different amino acid sequences were used. A chymotrypsin-sensitive peptide was also used as part of the hydrogel crosslinkers to render thiol-ene hydrogels enzymatically degradable. The second objective of this thesis was to develop a visible light-mediated thiol-ene hydrogelation scheme using a type II photoinitiator, eosin-Y, as the only photoinitiator. This approach eliminates the incorporation of potentially cytotoxic co-initiator and co-monomer that are typically used with a type II initiator. In addition to investigating the gelation kinetics and properties of thiol-ene hydrogels formed by this new gelation scheme, it was found that the visible light-mediated thiol-ene hydrogels were highly cytocompatible for human mesenchymal stem cells (hMSCs) and pancreatic MIN6 beta-cells. It was also found that eosin-Y could be repeatedly excited for preparing step-growth hydrogels with multilayer structures. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.
|
490 |
Derivation of endothelial colony forming cells from human cord blood and embryonic stem cellsMeador, J. Luke January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Endothelial Colony Forming Cells (ECFCs) are highly proliferative endothelial progenitor cells with clonal proliferative potential and in vivo vessel forming ability. While endothelial cells have been derived from human induced pluripotent stem cells (hiPS) or human embryonic stem cells (hES), they are not highly proliferative and require ectopic expression of a TGFβ inhibitor to restrict plasticity. Neuropilin-1 (NRP-1) has been reported to identify the emergence of endothelial precursor cells from human and mouse ES cells undergoing endothelial differentiation. However, the protocol used in that study was not well defined, used uncharacterized neuronal induction reagents in the culture medium, and failed to fully characterize the endothelial cells derived. We hypothesize that NRP-1 expression is critical for the emergence of stable endothelial cells with ECFC properties from hES cells. We developed a novel serum and feeder free defined endothelial differentiation protocol to induce stable endothelial cells possessing cells with cord blood ECFC-like properties from hES cells. We have shown that Day 12 hES cell-derived endothelial cells express the endothelial markers CD31+ NRP-1+, exhibit high proliferative potential at a single cell level, and display robust in vivo vessel forming ability similar to that of cord blood-derived ECFCs. The efficient production of the ECFCs from hES cells is 6 logs higher with this protocol than any previously published method. These results demonstrate progress towards differentiating ECFC from hES and may provide patients with stable autologous cells capable of repairing injured, dysfunctional, or senescent vasculature if these findings can be repeated with hiPS.
|
Page generated in 0.0249 seconds