1 |
Multiplexing video traffic using frame-skipping aggregation technique.January 1998 (has links)
by Alan Yeung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 53-[56]). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- MPEG Overview --- p.5 / Chapter 3 --- Framework of Frame-Skipping Lossy Aggregation --- p.10 / Chapter 3.1 --- Video Frames Delivery using Round-Robin Scheduling --- p.10 / Chapter 3.2 --- Underflow Safety Margin on Receiver Buffers --- p.12 / Chapter 3.3 --- Algorithm in Frame-Skipping Aggregation Controller --- p.13 / Chapter 4 --- Replacement of Skipped Frames in MPEG Sequence --- p.17 / Chapter 5 --- Subjective Assessment Test on Frame-Skipped Video --- p.21 / Chapter 5.1 --- Test Settings and Material --- p.22 / Chapter 5.2 --- Choice of Test Methods --- p.23 / Chapter 5.3 --- Test Procedures --- p.25 / Chapter 5.4 --- Test Results --- p.26 / Chapter 6 --- Performance Study --- p.29 / Chapter 6.1 --- Experiment 1: Number of Supportable Streams --- p.31 / Chapter 6.2 --- Experiment 2: Frame-Skipping Rate When Multiplexing on a Leased T3 Link --- p.33 / Chapter 6.3 --- Experiment 3: Bandwidth Usage --- p.35 / Chapter 6.4 --- Experiment 4: Optimal USMT --- p.38 / Chapter 7 --- Implementation Considerations --- p.41 / Chapter 8 --- Conclusions --- p.45 / Chapter A --- The Construction of Stuffed Artificial B Frame --- p.48 / Bibliography --- p.53
|
2 |
New techniques for streaming MPEG video over the internet /Zhou, Jian, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 112-118).
|
3 |
Packet level frame discard for MPEG-2 video in an active networkBrown, Kyle Russell. January 2002 (has links)
Thesis (M.S.)--University of Florida, 2002. / Title from title page of source document. Document formatted into pages; contains vii, 67 p.; also contains graphics. Includes vita. Includes bibliographical references.
|
4 |
ARMOR - adjusting repair and media scaling with operations research for streaming videoWu, Huahui. January 2006 (has links)
Dissertation (Ph.D.)--Worcester Polytechnic Institute. / Keywords: Streaming MPEG, User Study, Video Quality, Forward Error Correction, Temporal Scaling, Quality Scaling. Includes bibliographical references (p.186-198).
|
5 |
Transmissão de fluxos MPEG-2 com QoS s partir de servidores multimídia em redes ATMMelo, Patrícia Lima Seixas Vieira de January 2001 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Ciência da Computação / Made available in DSpace on 2012-10-18T10:32:19Z (GMT). No. of bitstreams: 0Bitstream added on 2014-09-25T20:53:58Z : No. of bitstreams: 1
181350.pdf: 4168422 bytes, checksum: 2d241c00d2a71342000a9e91be0b2eb0 (MD5) / Os servidores de armazenamento multimídia surgiram da necessidade de manipulação das informações multimídia. Diante das características deste tipo de informação, as quais diferenciam -se amplamente das informações alfanuméricas, o conceito de Qualidade de Serviço (QoS) precisou ser incorporado ao projeto deste tipo de servidor, visando proporcionar a entraga satifatória dos serviços solicitados. Aqualidade originalmente associada ao serviço, a fim de atender as necessidades dos usuários, pode ser modificada e desta forma, passar por um processo de adaptação às novas exigências dos mesmos. O trabalho de Dissertação de Mestrado apresentado tem como objetivo propor um modelo para a transmissão de fluxos MPEG-2 com QoS, a partir de servidores de armazenamento multimídia. Esta contribuição poderá posteriormente fazer parte de uma infra-estrutura maior, haja visto que o modelo proposto trata ainda dos processos de mapeamento e negociação dos parâmetros de Qualidade e Serviço executado durante a fase de configuração destas tranmissões. O presente trabalho baseia-se especificamente em servidores de vídeo MPEG-2 tendo como meio de transporte a Rede ATM, um vez que o mesmo interessa-se somente na definição de QoS ao nível desta tecnologia. A fim de que o embasamento necessário para a apresentação desta Dissertação fosse obtido, a exposição de alguns conceitos iniciais tornou-se essencialmente importante. Portanto, este trabalho introduz também os principais conceitos relativos a Aplicações Multimídia Distribuídas, Padrão de Compressão MPEG-2, Qualidade de Serviço, Tecnologia ATM e Sistema de Gerenciamento de Banco de Dados Multimídia e Servidores de Armazenamento Multimídia.
|
6 |
Model- and image-based scene representation.January 1999 (has links)
Lee Kam Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 97-101). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.2 / Chapter 1.1 --- Video representation using panorama mosaic and 3D face model --- p.2 / Chapter 1.2 --- Mosaic-based Video Representation --- p.3 / Chapter 1.3 --- "3D Human Face modeling ," --- p.7 / Chapter 2 --- Background --- p.13 / Chapter 2.1 --- Video Representation using Mosaic Image --- p.13 / Chapter 2.1.1 --- Traditional Video Compression --- p.17 / Chapter 2.2 --- 3D Face model Reconstruction via Multiple Views --- p.19 / Chapter 2.2.1 --- Shape from Silhouettes --- p.19 / Chapter 2.2.2 --- Head and Face Model Reconstruction --- p.22 / Chapter 2.2.3 --- Reconstruction using Generic Model --- p.24 / Chapter 3 --- System Overview --- p.27 / Chapter 3.1 --- Panoramic Video Coding Process --- p.27 / Chapter 3.2 --- 3D Face model Reconstruction Process --- p.28 / Chapter 4 --- Panoramic Video Representation --- p.32 / Chapter 4.1 --- Mosaic Construction --- p.32 / Chapter 4.1.1 --- Cylindrical Panorama Mosaic --- p.32 / Chapter 4.1.2 --- Cylindrical Projection of Mosaic Image --- p.34 / Chapter 4.2 --- Foreground Segmentation and Registration --- p.37 / Chapter 4.2.1 --- Segmentation Using Panorama Mosaic --- p.37 / Chapter 4.2.2 --- Determination of Background by Local Processing --- p.38 / Chapter 4.2.3 --- Segmentation from Frame-Mosaic Comparison --- p.40 / Chapter 4.3 --- Compression of the Foreground Regions --- p.44 / Chapter 4.3.1 --- MPEG-1 Compression --- p.44 / Chapter 4.3.2 --- MPEG Coding Method: I/P/B Frames --- p.45 / Chapter 4.4 --- Video Stream Reconstruction --- p.48 / Chapter 5 --- Three Dimensional Human Face modeling --- p.52 / Chapter 5.1 --- Capturing Images for 3D Face modeling --- p.53 / Chapter 5.2 --- Shape Estimation and Model Deformation --- p.55 / Chapter 5.2.1 --- Head Shape Estimation and Model deformation --- p.55 / Chapter 5.2.2 --- Face organs shaping and positioning --- p.58 / Chapter 5.2.3 --- Reconstruction with both intrinsic and extrinsic parameters --- p.59 / Chapter 5.2.4 --- Reconstruction with only Intrinsic Parameter --- p.63 / Chapter 5.2.5 --- Essential Matrix --- p.65 / Chapter 5.2.6 --- Estimation of Essential Matrix --- p.66 / Chapter 5.2.7 --- Recovery of 3D Coordinates from Essential Matrix --- p.67 / Chapter 5.3 --- Integration of Head Shape and Face Organs --- p.70 / Chapter 5.4 --- Texture-Mapping --- p.71 / Chapter 6 --- Experimental Result & Discussion --- p.74 / Chapter 6.1 --- Panoramic Video Representation --- p.74 / Chapter 6.1.1 --- Compression Improvement from Foreground Extraction --- p.76 / Chapter 6.1.2 --- Video Compression Performance --- p.78 / Chapter 6.1.3 --- Quality of Reconstructed Video Sequence --- p.80 / Chapter 6.2 --- 3D Face model Reconstruction --- p.91 / Chapter 7 --- Conclusion and Future Direction --- p.94 / Bibliography --- p.101
|
7 |
Foreground/background video coding for video conferencing =: 應用於視訊會議之前景/後景視訊編碼. / 應用於視訊會議之前景/後景視訊編碼 / Foreground/background video coding for video conferencing =: Ying yong yu shi xun hui yi zhi qian jing/ hou jing shi xun bian ma. / Ying yong yu shi xun hui yi zhi qian jing/ hou jing shi xun bian maJanuary 2002 (has links)
Lee Kar Kin Edwin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 129-134). / Text in English; abstracts in English and Chinese. / Lee Kar Kin Edwin. / Acknowledgement --- p.ii / Abstract --- p.iii / Contents --- p.vii / List of Figures --- p.ix / List of Tables --- p.xiii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- A brief review of transform-based video coding --- p.1 / Chapter 1.2 --- A brief review of content-based video coding --- p.6 / Chapter 1.3 --- Objectives of the research work --- p.9 / Chapter 1.4 --- Thesis outline --- p.12 / Chapter 2 --- Incorporation of DC Coefficient Restoration into Foreground/Background coding --- p.13 / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.2 --- A review of FB coding in H.263 sequence --- p.15 / Chapter 2.3 --- A review of DCCR --- p.18 / Chapter 2.4 --- DCCRFB coding --- p.23 / Chapter 2.4.1 --- Methodology --- p.23 / Chapter 2.4.2 --- Implementation --- p.24 / Chapter 2.4.3 --- Experimental results --- p.26 / Chapter 2.5 --- The use of block selection scheme in DCCRFB coding --- p.32 / Chapter 2.5.1 --- Introduction --- p.32 / Chapter 2.5.2 --- Experimental results --- p.34 / Chapter 2.6 --- Summary --- p.47 / Chapter 3 --- Chin contour estimation on foreground human faces --- p.48 / Chapter 3.1 --- Introduction --- p.48 / Chapter 3.2 --- Least mean square estimation of chin location --- p.50 / Chapter 3.3 --- Chin contour estimation using chin edge detector and contour modeling --- p.58 / Chapter 3.3.1 --- Face segmentation and facial organ extraction --- p.59 / Chapter 3.3.2 --- Identification of search window --- p.59 / Chapter 3.3.3 --- Edge detection using chin edge detector --- p.60 / Chapter 3.3.4 --- "Determination of C0, C1 and c2" --- p.63 / Chapter 3.3.5 --- Chin contour modeling --- p.67 / Chapter 3.4 --- Experimental results --- p.71 / Chapter 3.5 --- Summary --- p.77 / Chapter 4 --- Wire-frame model deformation and face animation using FAP --- p.78 / Chapter 4.1 --- Introduction --- p.78 / Chapter 4.2 --- Wire-frame face model deformation --- p.79 / Chapter 4.2.1 --- Introduction --- p.79 / Chapter 4.2.2 --- Wire-frame model selection and FDP generation --- p.81 / Chapter 4.2.3 --- Global deformation --- p.85 / Chapter 4.2.4 --- Local deformation --- p.87 / Chapter 4.2.5 --- Experimental results --- p.93 / Chapter 4.3 --- Face animation using FAP --- p.98 / Chapter 4.3.1 --- Introduction and methodology --- p.98 / Chapter 4.3.2 --- Experiments --- p.102 / Chapter 4.4 --- Summary --- p.112 / Chapter 5 --- Conclusions and future developments --- p.113 / Chapter 5.1 --- Contributions and conclusions --- p.113 / Chapter 5.2 --- Future developments --- p.117 / Appendix A H.263 bitstream syntax --- p.122 / Appendix B Excerpt of the FAP specification table [17] --- p.123 / Bibliography --- p.129
|
8 |
Robust and efficient techniques for automatic video segmentation.January 1998 (has links)
by Lam Cheung Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 174-179). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Problem Definition --- p.2 / Chapter 1.2 --- Motivation --- p.5 / Chapter 1.3 --- Problems --- p.7 / Chapter 1.3.1 --- Illumination Changes and Motions in Videos --- p.7 / Chapter 1.3.2 --- Variations in Video Scene Characteristics --- p.8 / Chapter 1.3.3 --- High Complexity of Algorithms --- p.10 / Chapter 1.3.4 --- Heterogeneous Approaches to Video Segmentation --- p.10 / Chapter 1.4 --- Objectives and Approaches --- p.11 / Chapter 1.5 --- Organization of the Thesis --- p.13 / Chapter 2 --- Related Work --- p.15 / Chapter 2.1 --- Algorithms for Uncompressed Videos --- p.16 / Chapter 2.1.1 --- Pixel-based Method --- p.16 / Chapter 2.1.2 --- Histogram-based Method --- p.17 / Chapter 2.1.3 --- Motion-based Algorithms --- p.18 / Chapter 2.1.4 --- Color-ratio Based Algorithms --- p.18 / Chapter 2.2 --- Algorithms for Compressed Videos --- p.19 / Chapter 2.2.1 --- Algorithms based on JPEG Image Sequences --- p.19 / Chapter 2.2.2 --- Algorithms based on MPEG Videos --- p.20 / Chapter 2.2.3 --- Algorithms based on VQ Compressed Videos --- p.21 / Chapter 2.3 --- Frame Difference Analysis Methods --- p.21 / Chapter 2.3.1 --- Scene Cut Detection --- p.21 / Chapter 2.3.2 --- Gradual Transition Detection --- p.22 / Chapter 2.4 --- Speedup Techniques --- p.23 / Chapter 2.5 --- Other Approaches --- p.24 / Chapter 3 --- Analysis and Enhancement of Existing Algorithms --- p.25 / Chapter 3.1 --- Introduction --- p.25 / Chapter 3.2 --- Video Segmentation Algorithms --- p.26 / Chapter 3.2.1 --- Frame Difference Metrics --- p.26 / Chapter 3.2.2 --- Frame Difference Analysis Methods --- p.29 / Chapter 3.3 --- Analysis of Feature Extraction Algorithms --- p.30 / Chapter 3.3.1 --- Pair-wise pixel comparison --- p.30 / Chapter 3.3.2 --- Color histogram comparison --- p.34 / Chapter 3.3.3 --- Pair-wise block-based comparison of DCT coefficients --- p.38 / Chapter 3.3.4 --- Pair-wise pixel comparison of DC-images --- p.42 / Chapter 3.4 --- Analysis of Scene Change Detection Methods --- p.45 / Chapter 3.4.1 --- Global Threshold Method --- p.45 / Chapter 3.4.2 --- Sliding Window Method --- p.46 / Chapter 3.5 --- Enhancements and Modifications --- p.47 / Chapter 3.5.1 --- Histogram Equalization --- p.49 / Chapter 3.5.2 --- DD Method --- p.52 / Chapter 3.5.3 --- LA Method --- p.56 / Chapter 3.5.4 --- Modification for pair-wise pixel comparison --- p.57 / Chapter 3.5.5 --- Modification for pair-wise DCT block comparison --- p.61 / Chapter 3.6 --- Conclusion --- p.69 / Chapter 4 --- Color Difference Histogram --- p.72 / Chapter 4.1 --- Introduction --- p.72 / Chapter 4.2 --- Color Difference Histogram --- p.73 / Chapter 4.2.1 --- Definition of Color Difference Histogram --- p.73 / Chapter 4.2.2 --- Sparse Distribution of CDH --- p.76 / Chapter 4.2.3 --- Resolution of CDH --- p.77 / Chapter 4.2.4 --- CDH-based Inter-frame Similarity Measure --- p.77 / Chapter 4.2.5 --- Computational Cost and Discriminating Power --- p.80 / Chapter 4.2.6 --- Suitability in Scene Change Detection --- p.83 / Chapter 4.3 --- Insensitivity to Illumination Changes --- p.89 / Chapter 4.3.1 --- Sensitivity of CDH --- p.90 / Chapter 4.3.2 --- Comparison with other feature extraction algorithms --- p.93 / Chapter 4.4 --- Orientation and Motion Invariant --- p.96 / Chapter 4.4.1 --- Camera Movements --- p.97 / Chapter 4.4.2 --- Object Motion --- p.100 / Chapter 4.4.3 --- Comparison with other feature extraction algorithms --- p.100 / Chapter 4.5 --- Performance of Scene Cut Detection --- p.102 / Chapter 4.6 --- Time Complexity Comparison --- p.105 / Chapter 4.7 --- Extension to DCT-compressed Images --- p.106 / Chapter 4.7.1 --- Performance of scene cut detection --- p.108 / Chapter 4.8 --- Conclusion --- p.109 / Chapter 5 --- Scene Change Detection --- p.111 / Chapter 5.1 --- Introduction --- p.111 / Chapter 5.2 --- Previous Approaches --- p.112 / Chapter 5.2.1 --- Scene Cut Detection --- p.112 / Chapter 5.2.2 --- Gradual Transition Detection --- p.115 / Chapter 5.3 --- DD Method --- p.116 / Chapter 5.3.1 --- Detecting Scene Cuts --- p.117 / Chapter 5.3.2 --- Detecting 1-frame Transitions --- p.121 / Chapter 5.3.3 --- Detecting Gradual Transitions --- p.129 / Chapter 5.4 --- Local Thresholding --- p.131 / Chapter 5.5 --- Experimental Results --- p.134 / Chapter 5.5.1 --- Performance of CDH+DD and CDH+DL --- p.135 / Chapter 5.5.2 --- Performance of DD on other features --- p.144 / Chapter 5.6 --- Conclusion --- p.150 / Chapter 6 --- Motion Vector Based Approach --- p.151 / Chapter 6.1 --- Introduction --- p.151 / Chapter 6.2 --- Previous Approaches --- p.152 / Chapter 6.3 --- MPEG-I Video Stream Format --- p.153 / Chapter 6.4 --- Derivation of Frame Differences from Motion Vector Counts --- p.156 / Chapter 6.4.1 --- Types of Frame Pairs --- p.156 / Chapter 6.4.2 --- Conditions for Scene Changes --- p.157 / Chapter 6.4.3 --- Frame Difference Measure --- p.159 / Chapter 6.5 --- Experiment --- p.160 / Chapter 6.5.1 --- Performance of MV --- p.161 / Chapter 6.5.2 --- Performance Enhancement --- p.162 / Chapter 6.5.3 --- Limitations --- p.163 / Chapter 6.6 --- Conclusion --- p.164 / Chapter 7 --- Conclusion and Future Work --- p.165 / Chapter 7.1 --- Contributions --- p.165 / Chapter 7.2 --- Future Work --- p.169 / Chapter 7.3 --- Conclusion --- p.171 / Bibliography --- p.174 / Chapter A --- Sample Videos --- p.180 / Chapter B --- List of Abbreviations --- p.183
|
9 |
Error-resilient coding tools in MPEG-4.January 1998 (has links)
by Cheng Shu Ling. / Thesis submitted in: July 1997. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 70-71). / Abstract also in Chinese. / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Image Coding Standard: JPEG --- p.1 / Chapter 1.2 --- Video Coding Standard: MPEG --- p.6 / Chapter 1.2.1 --- MPEG history --- p.6 / Chapter 1.2.2 --- MPEG video compression algorithm overview --- p.8 / Chapter 1.2.3 --- More MPEG features --- p.10 / Chapter 1.3 --- Summary --- p.17 / Chapter Chapter 2 --- Error Resiliency --- p.18 / Chapter 2.1 --- Introduction --- p.18 / Chapter 2.2 --- Traditional approaches --- p.19 / Chapter 2.2.1 --- Channel coding --- p.19 / Chapter 2.2.2 --- ARQ --- p.20 / Chapter 2.2.3 --- Multi-layer coding --- p.20 / Chapter 2.2.4 --- Error Concealment --- p.20 / Chapter 2.3 --- MPEG-4 work on error resilience --- p.21 / Chapter 2.3.1 --- Resynchronization --- p.21 / Chapter 2.3.2 --- Data Recovery --- p.25 / Chapter 2.3.3 --- Error Concealment --- p.28 / Chapter 2.4 --- Summary --- p.29 / Chapter Chapter 3 --- Fixed length codes --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Tunstall code --- p.31 / Chapter 3.3 --- Lempel-Ziv code --- p.34 / Chapter 3.3.1 --- LZ-77 --- p.35 / Chapter 3.3.2 --- LZ-78 --- p.36 / Chapter 3.4 --- Simulation --- p.38 / Chapter 3.4.1 --- Experiment Setup --- p.38 / Chapter 3.4.2 --- Results --- p.39 / Chapter 3.4.3 --- Concluding Remarks --- p.42 / Chapter Chapter 4 --- Self-Synchronizable codes --- p.44 / Chapter 4.1 --- Introduction --- p.44 / Chapter 4.2 --- Scholtz synchronizable code --- p.45 / Chapter 4.2.1 --- Definition --- p.45 / Chapter 4.2.2 --- Construction procedure --- p.45 / Chapter 4.2.3 --- Synchronizer --- p.48 / Chapter 4.2.4 --- Effects of errors --- p.51 / Chapter 4.3 --- Simulation --- p.52 / Chapter 4.3.1 --- Experiment Setup --- p.52 / Chapter 4.3.2 --- Results --- p.56 / Chapter 4.4 --- Concluding Remarks --- p.68 / Chapter Chapter 5 --- Conclusions --- p.69 / References --- p.70
|
10 |
Video decoder for H.264/AVC main profile power efficient hardware design.January 2011 (has links)
Yim, Ka Yee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (p. 43). / Abstracts in English and Chinese. / Acknowledgements --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF TABLES --- p.x / LIST OF FIGURES --- p.xi / Chapter CHAPTER 1 : --- INTRODUCTION --- p.1 / Chapter 1.1. --- Motivation --- p.1 / Chapter 1.2. --- Overview --- p.2 / Chapter 1.3. --- H.264 Overview --- p.2 / Chapter CHAPTER 2 : --- CABAC --- p.7 / Chapter 2.1. --- Introduction --- p.7 / Chapter 2.2. --- CABAC Decoder Implementation Review --- p.7 / Chapter 2.3. --- CABAC Algorithm Review --- p.9 / Chapter 2.4. --- Proposed CABAC Decoder Implementation --- p.13 / Chapter 2.5. --- FSM Method Bin Matching --- p.20 / Chapter 2.6. --- CABAC Experimental Results --- p.22 / Chapter 2.7. --- Summary --- p.26 / Chapter CHAPTER 3 : --- INTEGRATION --- p.27 / Chapter 3.1. --- Introduction --- p.27 / Chapter 3.2. --- Reused Baseline Decoder Review --- p.27 / Chapter 3.3. --- Integration --- p.30 / Chapter 3.4. --- Proposed Solution for Motion Vector Decoding --- p.33 / Chapter 3.5. --- Synthesis Result and Performance Analysis --- p.37 / Chapter CHAPTER 4 : --- CONCLUSION --- p.39 / Chapter 4.1. --- Main Contribution --- p.39 / Chapter 4.2. --- Reflection on the Development --- p.39 / Chapter 4.3. --- Future Work --- p.41 / BIBLIOGRAPHY --- p.43
|
Page generated in 0.1156 seconds