Spelling suggestions: "subject:"macdonald"" "subject:"macdonalds""
41 |
Truth, fantasy, and paradox the fairy tales of George MacDonald, G.K. Chesterton, and C.S. Lewis /Overkamp, Jennifer R. January 2008 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2008. / Title from title screen (site viewed Mar. 31, 2009). PDF text: 251 p. ; 2 Mb. UMI publication number: AAT 3331409. Includes bibliographical references. Also available in microfilm and microfiche formats.
|
42 |
Applied descriptive analysis of the preaching styles of three contemporary preachersSeidler, Scott K. January 2006 (has links)
Thesis (D. Min.)--Trinity Evangelical Divinity School, 2006. / Abstract. Includes bibliographical references (leaves 175-176).
|
43 |
One between worlds : the Sibyl archetype in the works of George MacDonald /Beckwith, Andrew D. January 1900 (has links) (PDF)
Thesis (M.A.)--Acadia University, 2000. / Includes bibliographical references (leaves 82-85). Also available on the Internet via the World Wide Web.
|
44 |
The military and diplomatic career of Jacques Étienne MacdonaldParrish, Ricky Eugene. Horward, Donald D. January 1900 (has links)
Thesis (Ph. D.)--Florida State University, 2005. / Advisor: Donald D. Horward, Florida State University, College of Arts and Sciences, Dept. of History. Title and description from dissertation home page (viewed Jan. 25, 2006). Document formatted into pages; contains xiii, 238 pages. Includes bibliographical references.
|
45 |
Dan R. MacDonald : Individual creativity in the Cape Breton fiddle tradition /McGann, Joseph Clifford, January 2003 (has links)
Thesis (M.A.)--Memorial University of Newfoundland, 2003. / Restricted until May 2004. Title on cassette: Dan R. MacDonald home recording. Bibliography: leaves 196-215.
|
46 |
Applied descriptive analysis of the preaching styles of three contemporary preachersSeidler, Scott K. January 2006 (has links)
Thesis (D. Min.)--Trinity Evangelical Divinity School, 2006. / Abstract. Includes bibliographical references (leaves 175-176).
|
47 |
Delta conjectures and Theta refinementsVanden Wyngaerd, Anna 19 November 2020 (has links) (PDF)
Dans les années 90 Garsia et Haiman ont introduit le $mathfrak S_n$-module des emph{harmoniques diagonales}, c'est à dire les co-invariants de l'action diagonale du groupe symétrique $mathfrak S_n$ sur les polynômes à deux ensembles de $n$ variables. Ils ont proposé la conjecture selon laquelle le caractère de Frobenius bi-gradué de leur module est $abla e_n$, où $abla$ est un opérateur sur l'anneau des fonction symétriques. En 2002, Haiman prouva cette conjecture. Quelques années plus tard, Haglund, Haiman, Loehr, Remmel et Ulyanov proposèrent une formule combinatoire pour la fonction symétrique $abla e_n$, qu'ils appelèrent la emph{conjecture shuffle}. Les objets combinatoires qui y figurent sont les chemins de Dyck étiquetés. Un raffinement emph{compositionnel} de cette formule fut ensuite proposé par Haglund, Morse et Zabrocki. C'était ce raffinement que Carlsson et Mellit réussirent enfin à montrer en 2018, établissant ainsi le emph{théorème shuffle}. La emph{conjecture Delta} est une paire de formules combinatoires pour la fonction symétrique $Delta'_{e_{n-k-1}}e_n$ en termes des chemins de Dyck étiquetés et décorés, qui généralise le théorème shuffle. Elle fut proposée par Hagund, Remmel et Wilson en 2015 est reste aujourd'hui un problème ouvert. Dans la même publication les auteurs proposèrent une formule pour $Delta_{h_m}Delta'_{e_{n-k-1}}e_n$ en termes de chemins de Dyck partiellement étiquetés et décorés, appelé emph{conjecture Delta généralisée}. Nous proposons un raffinement compositionnel de la conjecture Delta en utilisant des nouveaux opérateurs de fonctions symétriques: les opérateurs Theta. Nous généralisons les arguments combinatoires que Carlsson et Mellit utilisèrent pour la preuve du théorème shuffle au contexte de la conjecture Delta. Nous prouvons également la formule pour $Delta_{h_m} abla e_n$ en termes de chemins de Dyck partiellement étiqueté, c'est à dire le cas $k=0$ de la conjecture Delta généralisée. En 2006, Can et Loehr proposèrent la emph{conjecture carré}, exprimant la fonction symétrique $(-1)^{n-1}abla p_n$ en termes de chemins carrés étiquetés. Sergel montra que le théorème shuffle implique la conjecture carré. Nous généralisons le résultat de Sergel en montrant que une des formules de la conjecture Delta généralisée implique une formule combinatoire de la fonction $(-1)^{n-k}Delta_{h_m}Theta_kp_{n-k}$ e / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
48 |
Les polynômes de Macdonald dans le superespace et le modèle Ruijsenaars-Schneider supersymétriqueBlondeau-Fournier, Olivier 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / La théorie des superpolynômes symétriques ([DLM03, DLM06]) est généralisée avec l’introduction d’une nouvelle base de superfonctions qui dépend de deux paramètres q et t. Cette nouvelle base, que l’on appelle les polynômes de Macdonald dans le superespace (ou simplement, les superpolynômes de Macdonald), généralise toutes les autres bases de superfonctions connues. Celles-ci sont retrouvées via différentes spécialisations (ou limites) de q et t. On démontre que les superpolynômes de Macdonald sont uniquement déterminés par les deux propriétés suivantes. Premièrement, ils se décomposent de façon triangulaire dans la base des superfonctions monomiales (par rapport à l’ordre de dominance entre les superpartitions). Deuxièmement, ils sont orthogonaux par rapport à un produit scalaire donné dans la base des superfonctions sommes de puissances et qui dépend de q, t. L’étape clef pour démontrer ce résultat est la connexion avec la théorie des polynômes non symétriques de Macdonald. En fait, il est montré que les superpolynômes de Macdonald sont également donnés par un processus de symétrisation particulier des polynômes non symétriques de Macdonald. Cette connexion peut être alors exploitée pour obtenir une famille d’opérateurs qui est diagonale dans la base des superpolynômes de Macdonald ainsi qu’une seconde relation d’orthogonalité donnée par l’évaluation d’un terme constant. Ces deux éléments, i.e. famille d’opérateurs et orthogonalité (analytique), permettent de relier les superpolynômes de Macdonald à un problème de mécanique quantique supersymétrique généralisant le modèle Ruijsenaars-Schneider (RS). L’hamiltonien de ce modèle est défini par l’anticommutateur d’une supercharge qui est le générateur de la transformation supersymétrique. La structure algébrique sous-jacente à ce modèle est l’algèbre de Poincaré supersymétrique (i.e. une algèbre de Lie graduée). Tous les états propres de l’hamiltonien sont donnés par le produit de la fonction d’onde de l’état du vide par les superpolynômes de Macdonald. L’intégrabilité du modèle est également démontrée. / The theory of symmetric superpolynomials ([DLM03, DLM06]) is further extended with the introduction of a family of superpolynomials that depends upon two parameters, denoted by q and t. This new basis, that can be called Macdonald polynomials in superspace (or simply stated, Macdonald superpolynomials), generalizes all the previously discovered bases of superpolynomials. These are obtained by the evaluation (or by a limiting process) of the parameters q and t. It is proved that the Macdonald superpolynomials are uniquely defined by the two following properties. First, they decompose triangularly in the monomial basis (with respect to a certain ordering between superpartitions). Second, they are orthogonal with respect to a given scalar product evaluated in the power sum basis and which depends on q and t. The crucial step to prove this result is the connection between Macdonald superpolynomials and the theory of non-symmetric Macdonald polynomials. More precisely, it is showed that the Macdonald superpolynomials can be expressed by a certain symmetrizer acting on the non-symmetric analogue. Using this connection, a family of eigen-operators is obtained, which is diagonalized by the Macdonald superpolynomals basis. In addition, another orthogonality relation that involves a constant term evaluation (referred to as the analytic orthogonality) is obtained. These two elements, i.e. the eigen-operators and the orthogonality (analytic), link the Macdonald superpolynomials to a supersymmetric quantum mechanic model that generalizes the Ruijsenaars-Schneider (RS) model. The Hamiltonian of this model is naturally written as an anticommutator of a supercharge which is the generator of supersymmetric transformation. The underlying algebra of this model is the super Poincaré algebra (i.e. a graded Lie algebra). All the quantum states of the Hamiltonian are given as a product of the ground state function times Macdonald superpolynomials. Finally, the integrability of the supersymmetric RS model is demonstrated.
|
49 |
An evaluation of parameters used to map wildlife resources.Thompson, Eric Richard. January 1975 (has links)
No description available.
|
50 |
Modèle de Ruijsenaars-Schneider supersymétrique et superpolynômes de MacdonaldVeilleux, Vincent 13 April 2018 (has links)
Le modèle de Ruijsenaars-Schneider trigonométrique (tRS) quantique est un problème à N corps relativiste intégrable qui généralise le modèle de Calogero-Moser- Sutherland trigonométrique (tCMS). Les fonctions propres du modèle tRS sont les polynômes de Macdonald. La limite non relativiste qui relie les modèles tRS et tCMS est la même qui lie les polynômes de Macdonald et de Jack, les fonctions propres du modèle tCMS. Le but de ce mémoire est d'explorer la possibilité d'étendre le succès obtenu avec l'extension supersymétrique du modèle tCMS au modèle tRS. Le cas échéant, les superpolynômes de Macdonald pourraient être définis. Dans l'approche considérée, obtenir un coproduit diagonal de l'algèbre de Hecke est essentiel, mais n'a pas été possible pour TV > 2. On présente donc les résultats partiels connus pour le cas supersymétrique à deux et trois variables ainsi que la nature des obstacles qui, jusqu'à maintenant, ont empêché d'obtenir la généralisation voulue.
|
Page generated in 0.0438 seconds