Spelling suggestions: "subject:"cagnetic permeability"" "subject:"cagnetic ermeability""
1 |
Millimeter wave complex dielectric permittivity and complex magnetic permeability measurements of absorbing materials /Tkachov, Igor Ivanovich. January 2000 (has links)
Thesis (Ph.D.)--Tufts University, 2000. / Adviser: Mohammed Nurul Afsar. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references (leaves 183-192). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
|
2 |
Synthesis and characterization of magnetic composite materials /Kimmell, Robert January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 51-53). Also available on the World Wide Web.
|
3 |
Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequenciesJanuary 1946 (has links)
Charles Kittel. / "May 20, 1948." / Army Signal Corps Contract No. W-36-039 sc-32037. Contract OEMsr-262.
|
4 |
Novel magnetic composites for high frequency applications /Zhang, Xiaokai. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: John Q. Xiao, Dept. of Physics and Astronomy. Includes bibliographical references.
|
5 |
Electromagnetic Properties of GeomaterialsHakiki, Farizal 11 1900 (has links)
The advancement of both electronics and instrumentation technology has fostered the development of multi-physics platforms that can probe the earth’s subsurface. Remote, non-destructive testing techniques have led to the increased deployment of electromagnetic waves in sensor technology. Electromagnetic wave techniques are reliable and have the capacity to sense materials and associated properties with minimal perturbation. However, meticulous data analyses and mathematical derivations reveal inconsistencies in some formulations. Thus, revisiting the fundamental physics that underlies both electrical impedance experimental setups and electromagnetic properties are paramount. This study aims to unravel inherent limitations in the understanding of the relationships between electromagnetic and non-electromagnetic properties that are relevant to the characterization of fluids in porous media. These correlations pervade porosity, permeability, specific surface, pore size distribution, tortuosity, fluid discrimination, diffusion coefficient, degree of saturation, viscosity, temperature, phase transformation, miscibility, salinity, and the presence of impurities. The focus is on the assessment of liquids, soils, rocks, and colloids using broad spectral frequency complex permittivity, conductivity, magnetic permeability, and nuclear magnetic resonance relaxometry. Broadband electrical properties measurement for saturated porous media can provide multiple physical phenomena: Ohmic conduction, electrode polarizations, Maxwell-Wagner spatial polarizations, rotational, and segmental polarizations. Liquids dominate the electromagnetic signatures in porous media as dry minerals are inherently non-polar and non-conductive. Results reveal that voltage drops due to the discontinuity of charge-carrier at the electrode-electrolyte interface named electrode polarization inherently affect the low-frequency electrical measurements both in two- and four-probe configurations. Rotational polarizations that occur in MHz-GHz ranges are defined by the electrical dipole moment and effective molecular volume. Both viscosity and effective molecular volume govern the NMR transverse relaxation time. An engineered soil suspension with ferromagnetic inclusions exhibits excellent characteristics for drilling fluid application. Overall, the study highlights the complementary nature of conductivity, permittivity, and NMR relaxation for the advanced characterization of fluid saturated geomaterials.
|
6 |
Three Dimensional Controlled-source Electromagnetic Edge-based Finite Element Modeling of Conductive and Permeable HeterogeneitiesMukherjee, Souvik 2010 August 1900 (has links)
Presence of cultural refuse has long posed a serious challenge to meaningful geological interpretation of near surface controlled–source electromagnetic data (CSEM). Cultural refuse, such as buried pipes, underground storage tanks, unexploded ordnance, is often highly conductive and magnetically permeable. Interpretation of the CSEM response in the presence of cultural noise requires an understanding of electromagnetic field diffusion and the effects of anomalous highly conductive and permeable structures embedded in geologic media. While many numerical techniques have been used to evaluate the response of three dimensional subsurface conductivity distributions, there is a lack of approaches for modeling the EM response incorporating variations in both subsurface conductivity σ and relative permeability μr.
In this dissertation, I present a new three dimensional edge–based finite element (FE) algorithm capable of modeling the CSEM response of buried conductive and permeable targets. A coupled potential formulation for variable μ using the vector magnetic potential A and scalar electric potential V gives rise to an ungauged curl–curl equation. Using reluctivity (v=1/mu ), a new term in geophysical applications instead of traditional magnetic susceptibility, facilitates a separation of primary and secondary potentials. The resulting differential equation is solved using the finite element method (FEM) on a tetrahedral mesh with local refinement capabilities. The secondary A and V potentials are expressed in terms of the vector edge basis vectors and the scalar nodal basis functions respectively. The finite element matrix is solved using a Jacobi preconditioned QMR solver. Post processing steps to interpolate the vector potentials on the nodes of the mesh are described. The algorithm is validated against a number of analytic and multi dimensional numeric solutions. The code has been deployed to estimate the influence of magnetic permeability on the mutual coupling between multiple geological and cultural targets. Some limitations of the code with regards to speed and performance at high frequency, conductivity and permeability values have been noted. Directions for further improvement and expanding the range of applicability have been proposed.
|
7 |
Relaxation in harmonic oscillator systems and wave propagation in negative index materialsChimonidou, Antonia 02 June 2010 (has links)
This dissertation is divided up into two parts, each examining a distinct
theme. The rst part of our work concerns itself with open quantum systems and
the relaxation phenomena arising from the repeated application of an interaction
Hamiltonian on systems composed of quantum harmonic oscillators. For the second
part of our work, we shift gears and investigate the wave propagation in left-handed
media, or materials with simultaneously negative electric permeability and magnetic
permeability . Each of these two parts is complete within its own context.
In the rst part of this dissertation, we introduce a relaxation-generating
model which we use to study the process by which quantum correlations are created when an interaction Hamiltonian is repeatedly applied to bipartite harmonic oscillator
systems for some characteristic time interval . The two important time scales
which enter our results are discussed in detail. We show that the relaxation time
obtained by the application of this repeated interaction scheme is proportional to
both the strength of interaction and to the characteristic time interval . Through
discussing the implications of our model, we show that, for the case where the oscillator
frequencies are equal, the initial Maxwell-Boltzmann distributions of the
uncoupled parts evolve to a new Maxwell-Boltzmann distribution through a series
of transient Maxwell-Boltzmann distributions, or quasi-stationary, non-equilibrium
states. We further analyze the case in which the two oscillator frequencies are unequal
and show how the application of the same model leads to a non-thermal steady
state. The calculations are exact and the results are obtained through an iterative
process, without using perturbation theory.
In the second part of this dissertation, we examine the response of a plane
wave incident on a
at surface of a left-handed material, a medium characterized
by simultaneously negative electric permittivity and magnetic permeability . We
do this by solving Maxwell's equations explicitly. In the literature up to date,
it has been assumed that negative refractive materials are necessarily frequency
dispersive. We propose an alternative to this assumption by suggesting that the
requirement of positive energy density can be relaxed, and discuss the implications
of such a proposal. More speci cally, we show that once negative energy solutions
are accepted, the requirement for frequency dispersion is no longer needed. We
further argue that, for the purposes of discussing left-handed materials, the use of
group velocity as the physically signi cant quantity is misleading, and suggest that
any discussion involving it should be carefully reconsidered. / text
|
8 |
Eddy Current Characterization of Stressed Steel and the Development of a Shaft Torque Eddy Current SystemVaronis, Orestes J. 17 December 2008 (has links)
No description available.
|
9 |
A Scattering-based Approach to the Design, Analysis, and Experimental Verification of Magnetic Metamaterials Made from DielectricsWheeler, Mark Stephen 01 September 2010 (has links)
The design, modeling, fabrication, and validation of an optical magnetic response in dielectric-based metamaterials are studied. These metamaterials consist of either periodic or random arrays of dielectric particle inclusions, which may be spheres, coated spheres, or completely randomly shaped. It is demonstrated that because of the simple particle shapes and dielectric materials, these metamaterials are quite easy and feasible to implement in a bulk, three-dimensional sample, and the response is isotropic. This in is contrast to other predominant designs of optical metamaterials, which are planar and anisotropic arrays of complicated metallic fishnet or split-ring resonator structures, which require stringent tolerances and sophisticated assembly. It is shown that SiC is one of many materials from which such infrared magnetic metamaterials can be constructed. A simple SiC powder is used to verify these claims. The milled micropowder of crystalline SiC is comprised of particles of random shapes and sizes. A model of the electromagnetic response of such powders is developed, whereby the induced magnetic dipole response is modeled by equivalently-sized spheres of SiC, whereas the electric dipole response is modeled by a continuous distribution of ellipsoidal particles. Infrared spectroscopic measurements and numerical calculations are performed, verifying both the magnetic and electric response of the powder. A alternate approach is also described, where uniform SiC microspheres are fabricated using more sophisticated nanochemical techniques. In the final portion of the dissertation, the mutual near-field coupling between ideal magnetic dipoles induced in dielectric spheres is studied. This is implemented for microwave frequencies using large permittivity ceramic spheres. An approximate coupled dipole model of the multiple scattering among the spheres is developed, and a transition matrix method is implemented to calculate the exact scattering by the clusters. Experimental measurements are performed, confirming the two models. The results for pairs, chains, and rings of spheres indicates that the magnetic dipole modes hybridize in analogy to atomic bonding. A notable result is that certain hybridized magnetic dipole modes may have a net electric dipole moment. The similarity to atomic and molecular bonding should prove useful in conceptualizing and designing more sophisticated metamaterials.
|
10 |
A Scattering-based Approach to the Design, Analysis, and Experimental Verification of Magnetic Metamaterials Made from DielectricsWheeler, Mark Stephen 01 September 2010 (has links)
The design, modeling, fabrication, and validation of an optical magnetic response in dielectric-based metamaterials are studied. These metamaterials consist of either periodic or random arrays of dielectric particle inclusions, which may be spheres, coated spheres, or completely randomly shaped. It is demonstrated that because of the simple particle shapes and dielectric materials, these metamaterials are quite easy and feasible to implement in a bulk, three-dimensional sample, and the response is isotropic. This in is contrast to other predominant designs of optical metamaterials, which are planar and anisotropic arrays of complicated metallic fishnet or split-ring resonator structures, which require stringent tolerances and sophisticated assembly. It is shown that SiC is one of many materials from which such infrared magnetic metamaterials can be constructed. A simple SiC powder is used to verify these claims. The milled micropowder of crystalline SiC is comprised of particles of random shapes and sizes. A model of the electromagnetic response of such powders is developed, whereby the induced magnetic dipole response is modeled by equivalently-sized spheres of SiC, whereas the electric dipole response is modeled by a continuous distribution of ellipsoidal particles. Infrared spectroscopic measurements and numerical calculations are performed, verifying both the magnetic and electric response of the powder. A alternate approach is also described, where uniform SiC microspheres are fabricated using more sophisticated nanochemical techniques. In the final portion of the dissertation, the mutual near-field coupling between ideal magnetic dipoles induced in dielectric spheres is studied. This is implemented for microwave frequencies using large permittivity ceramic spheres. An approximate coupled dipole model of the multiple scattering among the spheres is developed, and a transition matrix method is implemented to calculate the exact scattering by the clusters. Experimental measurements are performed, confirming the two models. The results for pairs, chains, and rings of spheres indicates that the magnetic dipole modes hybridize in analogy to atomic bonding. A notable result is that certain hybridized magnetic dipole modes may have a net electric dipole moment. The similarity to atomic and molecular bonding should prove useful in conceptualizing and designing more sophisticated metamaterials.
|
Page generated in 0.0583 seconds