Spelling suggestions: "subject:"cagnetic fields"" "subject:"cmagnetic fields""
181 |
International Workshop on Measuring Techniques for Liquid Metal Flows (MTLM), Rossendorf, 11.-13.10.99, ProceedingsGerbeth, Gunter, Eckert, Sven 31 March 2010 (has links) (PDF)
The International Workshop on "Measuring Techniques in Liquid Metal Flows" (MTLM Workshop) was organised in frame of the Dresden "Innovationskolleg Magnetofluiddynamik". The subject of the MTLM Workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of non-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available to monitor and to control flow processes in real industrial facilities.
|
182 |
Magnetic field enhancement of Coulomb blockade conductance oscillations in metal-metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithographyWiemeri, Jeffrey Charles 28 August 2008 (has links)
Not available / text
|
183 |
An investigation of the physical parameters of young stellar objectsDeen, Casey Patrick 26 January 2012 (has links)
Studies of the temporal evolution of young stars and their associated properties rely upon the ability of astronomers to determine ages and masses of objects in different evolutionary states. The best method for determining the age and mass of a young stellar object is to place the object on the Hertzsprung-Russell (HR) diagram and to compare to theoretical evolutionary tracks. Accurate ages allow the investigation of the temporal evolution of properties associated with stellar youth (accretion rates, X-ray activity, circumstellar excess, etc...). One property intimately linked with stellar youth is the presence (or absence) of an optically thick primordial circumstellar disk. Objects in "young" star forming regions are more likely to show evidence for a disk than objects in "older" clusters. Within a single cluster, the picture is not as clear. There exist objects in very young clusters (~1 Myr) which show no evidence for circumstellar disks, and there exist objects in very old clusters (~10 Myr), which show evidence for robust disks, suggesting a variable other than stellar age is driving the evolution of the disks. To investigate whether these outliers are due to age spreads, initial conditions, or simply appear anomalous due to erroneous age determinations, we must determine better placements in the HR diagram by carefully transforming observable quantities (spectral type and apparent magnitude) into the quantities necessary for comparison evolutionary models (effective temperature and luminosity). In the Ophiuchus star forming region, I investigate whether or not objects with disks are younger than disk-less objects. I find no difference in the ages of the two populations, but the systematic and random uncertainties are large enough to mask all but the largest age differences. In the hope of better determining the physical parameters of young stellar objects, I embark on a spectral synthesis campaign to produce comparison synthetic spectra which account for the effects of magnetic fields. This requires the modification of the MOOG spectral synthesis program to handle the full Stokes vector treatment for polarized radiation through a magnetized medium. I create a grid of synthetic spectra covering ranges in effective temperature, surface gravity, and average magnetic field strength relevant for studies of young stellar objects, and develop a Chi-squared minimization routine to determine the best fit synthetic spectrum for a given observed spectrum at an arbitrary resolving power. This grid of synthetic spectra will be an invaluable complement to future near infrared, large band-pass, high-resolving power spectrographs (i.e. IGRINS). In addition to these observational and theoretical attempts to reduce systematic errors, I also helped to develop a suite of silicon and KRS-5 grisms for use in the FORCAST instrument, a mid infrared camera on the SOFIA telescope. These grisms will afford the imaging instrument a mid infrared spectroscopic capability at wavelengths normally inaccessible from the ground. I also report on my work to help write FG Widget, the quick-look reduction software package developed to support grism observations. / text
|
184 |
Spectropolarimetry of Fine Magnetized Structures in the Upper Solar AtmosphereSchad, Thomas Anthony January 2013 (has links)
One of the earliest indications of magnetic fields acting in the solar atmosphere came at the beginning of the 20th century when George Hale noted a "decided definiteness of structure" in photographs within the Hydrogen Balmer-alpha line core. Fine structure both in the chromosphere and in the corona result from processes that are not well understood but accepted as a consequence of the solar magnetic field. Our knowledge of this field is lacking, and until recently, the assumed relationship between fine thermal structure and the magnetic field remained untested. Here, spectropolarimetric diagnostics of fine structures in the solar chromosphere and cool corona are advanced using the infrared He I triplet at 1083 nm. Precise calibration procedures are developed for the Facility Infrared Spectropolarimeter (FIRS), recently commissioned at the Dunn Solar Telescope. Together with high-order adaptive optics, we simultaneously map fine structures while obtaining a polarimetric sensitivity of up to 2 x 10 ⁻⁴ of the incoming intensity. These instrument improvements result in the first maps of the He I polarized signatures within an active region superpenumbra, where Hale first recognized fine-structuring. Selective absorption and emission processes due to non-equilibrium optical pumping are recognized. Our interpretation, using advanced inversions of the He I triplet, provides confirmation of Hale's initial suspicion--the fine structures of the solar chromosphere are visual markers for the magnetic field. Yet, the fine chromospheric thermal structure is not matched by an equivalently fine magnetic structure. Our ability to measure this field suggests the utility of the He I triplet as an inner boundary condition for the inner heliospheric magnetic field. In the corona itself, we infer the vector properties of a catastrophically-cooled coronal loop, uniting space-based and ground-based instrumentation. We determine how fine loops are anchored in the photosphere via a narrow umbral flare, the consequence of a supersonic downflow of cooled material. A stereoscopic reconstruction as well as full-Stokes inversions of the He I measurements provide the first comparison of the 3D thermal structure and 3D magnetic structure of a fine-scaled coronal loop.
|
185 |
ULTRAWEAK PHOTON EMISSION IN CELLS: COUPLING TO MOLECULAR PATHWAYS, APPLIED MAGNETIC FIELDS, AND POTENTIAL NON-LOCALITYDotta, Blake 19 March 2014 (has links)
The possibilities and implications of photons within the
infrared, visible, and ultraviolet behaving as sources of
intracellular and intercellular communication and information were
investigated experimentally for melanoma cells during the 24 hrs
following removal from incubation. Specific wavelengths during
different intervals were associated with specific classes of
biomolecules that were predicted based on the physical properties
associated with their amino acid sequences. Application of a
specific intensity and physiologically patterned magnetic field
predicted from a model that applied the concept of magnetic moment
to the whole cell resulted in photon emissions. They were detected
at distances sufficient to allow intercellular communication. The
occurrence of macroscopic entanglement or non-locality was shown
between two loci of where simple chemically-based photons emissions
were generated. Within all three experiments there was marked
quantitative congruence between the energies associated with the
power density of the photon emissions and the physicochemical
variables involved with their reduction. These results indicate
that photon emissions coupled with classic biomolecular pathways
and processes may behave as intra- and inter-cellular sources of
information that could control the complex dynamics of cells. The
effect may not depend upon locality but exhibit non-local
characteristics.
|
186 |
The use of linear filtering in gravity and magnetic problems.Lim, Sze Hian January 1972 (has links)
No description available.
|
187 |
Effects of electric and magnetic fields on selected physiological and reproductive parameters of American kestrelsFernie, Kimberly J. January 1998 (has links)
Birds nest under electric and magnetic fields (EMFs) generated by transmission liners which may affect their reproductive success and/or melatonin governing their circadian and circannual cycles. Over two years, captive kestrels were used to determine whether EMFs affect their plasma melatonin concentrations and their reproductive success. EMFs were equivalent to that which wild kestrels are exposed to while nesting under 735 kV transmission fines, and daily exposure used in the captive study (88--98% time budget) was potentially equivalent to that of wild kestrels (90% X, 80% X). Captive kestrels were housed in control or EMF conditions to determine short-term (one season; S-EMF) and longer-term EMF (two seasons; L-EMF) effects. / Plasma melatonin in adult EMF males was suppressed at 42 d and elevated at 70 d of EMF exposure compared to controls. Melatonin levels in EMF males at mid-season were similar to controls at season's end, suggesting a seasonal phase-shift. Melatonin was suppressed in L-EMF fledgling birds but not in adult females or nudes (1995) at 70 d. Plasm melatonin, higher in adult males than females at 70 d post-pairing, was not directly associated with body mass changes in kestrels. / Captive EMF birds were more active and alert but groomed less often than controls. EMF exposure affected reproductive success of kestrels. Fertility and fledging success were higher, and hatching success lower in S-EMF clutches. Hatching success was higher, but fledging success lower in L-EMF clutches. In S-EMF clutches, mean egg volume and mass were greater, eggs had slightly more albumen but thinner eggshells, and embryos were larger than controls. L-EMF hatchlings were heavier than controls. / The melatonin results for male kestrels indicate that kestrels perceive EMFs as light, thus altering their photoperiod. Photoperiodic manipulations advance molt onset, which is associated with increased body mass in male kestrels. S-EMF males were heavier at 56 d of exposure when molt began, but this was unlikely related to feed intake winch was unchanged. EMF exposure had no effect on body mass and pectoral muscle scores of reproducing females. The sexually-dimorphic response in body mass and melatonin concentrations suggests that male kestrels may be more sensitive to EMF exposure than females.
|
188 |
MAGNETIC FIELDS IN THE GALAXYMayo, Elizabeth Ann 01 January 2008 (has links)
The object of this dissertation is to provide an observational study of the effects of interstellar magnetic fields on star-formation regions. This is part of a long-standing research project that uses the techniques of radio astronomy to measure magnetic field strengths in the interstellar medium of our galaxy. Interstellar magnetic fields are believed to play a crucial role in the star-formation process therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. The regions observed include the giant molecular clouds and star-forming regions of Cygnus X and NGC 6334. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (based on studies by Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them.
|
189 |
Physical Conditions in a Galactic Star forming region W22Rane, Akshaya 01 January 2011 (has links)
This document describes study of an active star forming region in our galaxy (the Milky Way) known as W22. Physical conditions in these regions can help us in understanding star formation processes in the universe and hence the structure and evolution of the universe. Zeeman effect measurements in 18 cm OH absorption line were carried out in order to estimate the line of sight magnetic field strength in the molecular cloud associated with this star forming region. Other physical parameters such as hydrogen column density, optical depth, critical magnetic field were also determined from these measurements. The region was mapped at 18 cm and the distribution of molecular gas within this star forming complex was described.
|
190 |
Inhomogeneous magnetic fields in the solar atmosphereBrowning, Philippa January 1984 (has links)
The magnetic field in the solar atmosphere is highly inhomogeneous. In the photosphere, the field is concentrated into intense flux tubes and the coronal magnetic field consists of many loops and regions of open field. This thesis investigates some of the basic properties of inhomogeneous solar magnetic fields. First of all, the equilibrium properties of untwisted flux tubes, confined by a spatially varying external pressure distribution, are investigated. The behaviour of thick flux tubes, including the effects of a transverse field component and a variation in the field across the tube, is compared with slender flux tube theory. It is shown that slender tube theory is accurate for tubes which are approximately slender, but that completely misleading results can be obtained by applying slender tube theory if the pressure distribution is not slowly varying. Twisted flux tubes are then studied, with the aim of finding how twisting affects a tube confined by an inhomogeneous pressure distribution. It is shown that, in general, a tube expands as it is twisted; this is illustrated both by extensions to slender tube theory and by some exact analytical solutions. A family of linear solutions is used to model the evolution of a finite tube confined by a falling external pressure. It is shown that, if the confining pressure falls too low, the tube may burst, with some dynamic process ensuing. The equilibrium properties of a flux tube with a curved axis are then investigated, with the main aim of modelling coronal loops. Previous theory for the equilibrium of a curved slender flux tube in a gravitationally stratified atmosphere, with a balance between magnetic buoyancy and tension forces, is extended to take into account an external field and the effects of twist. Increasing the magnitude of the external field tends to lower the summit height of the tube. It is found that non-equilibrium sets in if the footpoints are separated more than a certain critical width, which does not depend on the magnitude of the external field. It is found that two possible equilibrium heights can exist for a twisted tube; however, if the tube is twisted too far, or if the footpoints are moved apart, non-equilibrium can set in. The critical width at which non-equilibrium occurs is lower for a twisted tube than for an untwisted one. This is suggested as an explanation for the rise of a filament prior to a two ribbon flare, and as a mechanism for coronal transients. An alternative description of the coronal magnetic field is given, using a perturbation expansion for an almost potential field, with small pressure gradients. The field is assumed to be line-tied at the photospheric base. Then the equilibrium properties of the global magnetic field of a star are investigated. A linear and non-linear family of solutions to the magnetostatic equilibrium equation are found. The linear solutions are used to investigate the twisting up of force-free dipolar and quadrupolar fields, including in a simple manner the effects of a stellar wind. In both cases, it was found that the field becomes physically unreasonable if it is twisted too far, with field lines detached from the star being formed, which would be pulled out by the stellar wind. Thus, if the field is twisted more than a critical amount, non-equilibrium sets in and some catastrophic behaviour takes place. This is suggested as a possible mechanism for stellar flares. Similar results are found in a study of the effects of increasing the pressure gradients at the stellar surface of a magnetostatic dipole-like field. The linear solutions are also used to study the equilibrium of a finite magnetosphere, and multiple equilibria are found. Finally, one aspect of the propagation of waves in an inhomogeneous magnetic field is studied, with particular reference to the problem of heating the solar corona. The mechanism of phase-mixing, which provides a means of dissipating shear Alfven waves that propagate in an inhomogeneous magnetic field, is investigated. The onset of Kelvin-Helmholtz instability, which could disrupt the wave and thus enhance the dissipation, is studied. First, the dispersion relation of the instability is calculated for the case of fully developed phase-mixing. Then, the onset of the instability is investigated, to find out whether the instability can grow before the phase-mixing is fully developed. It is found that instability can set in after only a very few wave periods. It is suggested that the instability triggers off a turbulent cascade which dissipates the wave energy. The heating rates that could be produced by such a process are calculated, and are found to be more than adequate for coronal heating.
|
Page generated in 0.044 seconds