• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 12
  • 12
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experiments with Bose-Einstein condensation in an optical box

Meyrath, Todd 28 August 2008 (has links)
Not available / text
2

Experiments with Bose-Einstein condensation in an optical box

Meyrath, Todd Philip. Raizen, Mark George, January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Mark G. Raizen. Vita. Includes bibliographical references.
3

Micro-magnetic Structures for Biological Applications

Howdyshell, Marci Lynn January 2014 (has links)
No description available.
4

Bose-Einstein condensation of rubidium-87 atoms in a magnetic trap /

Han, Dian-jiun, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 140-153). Available also in a digital version from Dissertation Abstracts.
5

Double-TOP trap for ultracold atoms

Thomas, Nicholas, n/a January 2005 (has links)
The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted. A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered. A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud. The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.
6

Double-TOP trap for ultracold atoms

Thomas, Nicholas, n/a January 2005 (has links)
The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted. A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered. A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud. The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.
7

New aspects of particle acceleration in collapsing magnetic traps

Eradat Oskoui, Solmaz January 2014 (has links)
Collapsing magnetic traps (CMTs) have been suggested as one of the mechanisms that could contribute to particle energisation in solar flares. The basic idea behind CMTs is that charged particles will be trapped on the magnetic field lines below the reconnection region of a flare. This thesis discusses a number of important new aspects in particle energisation processes in CMTs, based on the model by Giuliani et al. (2005). In particular, we extend previous studies of particle acceleration in this CMT model to the relativistic regime and compare our results obtained using relativistic guiding centre theory with results obtained using the non-relativistic guiding centre theory. The similarities and differences found are discussed. We then present a detailed study of the question, what leads to the trapping or escape of particle orbits from CMTs. The answer to this question is investigated by using results from the non-relativistic orbit calculations with guiding centre theory and a number of simple models for particle energy gain in CMTs. We find that there is a critical pitch angle dividing trapped particle orbits from the escaping particle orbits and that this critical pitch angle does not coincide with the initial loss cone angle. Furthermore, we also present a calculation of the time evolution of an anisotropic pressure tensor and of the plasma density under the assumptions that they evolve in line with our kinematic MHD CMT model and that the pressure tensor satisfies the double-adiabatic Chew-Goldburger-Low (CGL) theory. Finally, we make a first step to introduce Coulomb scattering by a Maxwellian background plasma into our guiding centre equations by changing them into a set of stochastic differential equations. We study the influence of a static background plasma onto selected particle orbits by pitch angle scattering and energy losses, and look at its effect on the particle energy and the trapping conditions.
8

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun 28 August 2008 (has links)
Not available / text
9

Photoassociation experiments on ultracold and quantum gases in optical lattices

Ryu, Changhyun, Heinzen, Daniel J., January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Daniel J. Heinzen. Vita. Includes bibliographical references. Also available from UMI.
10

Charged Particle Transport and Confinement Along Null Magnetic Curves and in Various Other Nonuniform Field Configurations for Applications in Antihydrogen Production

Lane, Ryan A. 05 1900 (has links)
Comparisons between measurements of the ground-state hyperfine structure and gravitational acceleration of hydrogen and antihydrogen could provide a test of fundamental physical theories such as CPT (charge conjugation, parity, time-reversal) and gravitational symmetries. Currently, antihydrogen traps are based on Malmberg-Penning traps. The number of antiprotons in Malmberg-Penning traps with sufficiently low energy to be suitable for trappable antihydrogen production may be reduced by the electrostatic space charge of the positrons and/or collisions among antiprotons. Alternative trap designs may be needed for future antihydrogen experiments. A computational tool is developed to simulate charged particle motion in customizable magnetic fields generated by combinations of current loops and current lines. The tool is used to examine charged particle confinement in two systems consisting of dual, levitated current loops. The loops are coaxial and arranged to produce a magnetic null curve. Conditions leading to confinement in the system are quantified and confinement modes near the null curve and encircling one or both loops are identified. Furthermore, the tool is used to examine and quantify charged particle motion parallel to the null curve in the large radius limit of the dual, levitated current loops. An alternative to new trap designs is to identify the effects of the positron space in existing traps and to find modes of operation where the space charge is beneficial. Techniques are developed to apply the Boltzmann density relation along curved magnetic field lines. Equilibrium electrostatic potential profiles for a positron plasma are computed by solving Poisson's equation using a finite-difference method. Equilibria are computed in a model Penning trap with an axially varying magnetic field. Also, equilibria are computed for a positron plasma in a model of the ALPHA trap. Electric potential wells are found to form self-consistently. The technique is expanded to compute equilibria for a two-species plasma with an antiproton plasma confined by the positron space charge. The two-species equilibria are used to estimate timescales associated with three-body recombination, losses due to collisions between antiprotons, and temperature equilibration. An equilibrium where the three-body recombination rate is the smallest is identified.

Page generated in 0.0794 seconds