• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 63
  • 15
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 303
  • 68
  • 66
  • 53
  • 51
  • 29
  • 28
  • 27
  • 25
  • 25
  • 23
  • 23
  • 21
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Iron and Oxygen Isotope Signatures of Magnetite in Iron Ore of Kiruna Type / Järn- och syre-isotoper hos magnetit i järnmalm av Kirunatyp

Andersson, Malin January 2020 (has links)
Stable isotope analysis of iron and oxygen isotopes in magnetite of Kiruna-type from Sweden and Chile have been conducted to further the understanding of the formation, and advance the analysis methods of these deposits. For this, data from SIMS (secondary ion mass spectroscopy), EBSD (electron backscatter diffraction) and triple oxygen analysis (by laser fluorination) are used. Some researchers have found that crystal orientation can affect the oxygen and iron isotope ratios when analysing magnetite by SIMS, complicating the process. EBSD analysis therefore aided by finding the orientations of the crystals prior to SIMS analysis. Magnetite from Kiruna have been tested for use as SIMS reference material, but it did not prove to be suitable at present time. Further homoegeneity tests can be useful before declaring the sample as unsuitable. Preliminary iron isotope results from SIMS on magnetite from Kiirunavaara indicate an internal variation of δ 56 Fe between -0.72-0.70 per mil, with an uncertainty of 0.38 per mil (1σ). The variations could not be determined to match crystal orientations. Triple oxygen analyses show very low ∆'17 O on Kiruna samples, -357 to -171 ‰, indicating a strong MIF-O (mass-independently fractionated oxygen isotope composition) component. The MIF-O signal is also present in ∆'17 O records in evaporites from similar ages (1.7 - 1.9 Ga) (Crockford et al. 2019), which are known to partly contain oxygen derived from atmospheric O 2 . The MIF-O signal was not present in the Chilean magnetite samples, however, they are within the ∆'17 range of evaporites (Crockford et al.2019) from a similiar age (0 Ma vs 2 Ma). It is proposed that magmatic fluids interacted with evaporites, exchanging oxygen isotopes, before forming magnetite of Kiruna-type, thereby allowing the magnetite to contain part of the atmospheric isotopic record.
172

A Study Of The Opaque Minerals In The Whitestone Anorthosite, Dunchurch, Ontario

Kretschmar, Ulrich H. 05 1900 (has links)
<p> A textural and mineralogical study of the magnetite, hemoilmenite and minor sulfide phases of the Whitestone anorthosite, Dunchurch, Ontario, was carried out. The composition of magnetite and hemo-ilmenite was determined by chemical analysis, X-ray diffraction and electron probe microanalysis. A modification of the solvus shape in the hematite-ilmenite system consistent with the composition of hemo-ilmenite lamellae, as well as a mechanism for formation of metamorphic magnetite porphyroblasts from ferrianilmenite is proposed. Buddington and Lindsley's experimental data cannot be used directly to obtain f02 and T of formation of the anorthosite because compositions fall in the highly oxidizing and as yet undetermined portion of their diagram. </p> / Thesis / Master of Science (MSc)
173

Geophysical Response of Sulfide-Poor PGM-Bearing Mafic-Ultramafic Rocks: Example of the Boston Creek Flow, Abitibi Greenstone Belt, Ontario

Larson, Michelle Susanne 29 April 1994 (has links)
<p> Sulfide-poor platinum-group element (PGE) mineralization occurs within the Archean Boston Creek Flow ferropicrite, Abitibi greenstone belt, Canada. The PGE mineralization (∑PGE+Au = up to 1000 ppb) is manifest as metre-scale platinum-group mineral-bearing pods of disseminated chalcopyrite and pyrite (< 1 modal%) within titaniferous magnetite-rich gabbroic rock at the base of its central gabbroic layer. This mineralization is distinct in character from well known PGE mineralization associated with massive Fe-Ni-Cu sulfides at the base of komatiite flows at Kambalda, Western Australia and elsewhere. Exploration strategies presently used to search for PGE in mafic and ultramafic volcanic rock terrains are based on the geological and geophysical characteristics of sulfide-rich PGE mineralization. Consequently, refinements in exploration strategies are required if economic concentrations of sulfide-poor PGE mineralization are to be discovered in volcanic terrains.</p> <p> To begin development of such exploration criteria, ground-based magnetic and VLF surveys were conducted over the PGE mineralization along a single cross-section through the BCF. Drill core samples were collected along this transect to characterize the volume magnetic susceptibility and natural remanent magnetization (NRM) of the mineralization. Magnetic highs ranging in intensity from 64000 to 65000 nT were recorded for the base of the gabbroic layer, including mineralized outcrops. Susceptibilities of up to 9700 cgs and high remanence values with variable directions were determined. VLF, as expected, was not useful in identifying the mineralized horizons. The peridotite at the base of the flow appears to be the only conductive rock in the BCF.</p> <p> The magnetic highs associated with the base of the gabbroic layer define a positive anomaly that appears to be podiform in outline and up to ten metres in maximum dimension. This result suggests that the titaniferous magnetite-rich rock is itself podiform, like the enclosed PGE mineralization. This magnetic anomaly is not extensive enough to be evident on a regional scale aeromagnetic map as a separate anomaly within the BCF, and is not evident through VLF techniques. The rocks hosting the PGE mineralization is defined by the paleomagnetic results but this is not a practical field method.</p> <p> The geophysical characterization of the PGE mineralization host rocks, and of the BCF in general, demonstrates the potential of detailed magnetic and susceptibility mapping, together with petrographic and petrologic studies, in the search for economic PGE concentrations of sulfide-poor PGE mineralization in other volcanic and possibly plutonic rocks as well. Specifically, the results suggest that podiform magnetic anomalies within titaniferous magnetite-rich pyroxenites and gabbroic rocks may have potential use in the exploration for economic sulfide-poor PGE mineralization. Although the paleomagnetic methods used in this study are probably not of direct use in exploration, they were able to distinguish the different lithologies in the BCF. This substantiates the results of the susceptibility measurements in characterizing PGE mineralized, titaniferous magnetite-bearing rocks. The results of the paleomagnetic study also show that the NRM of the Ghost Range intrusive complex is not primary and therefore the Archean apparent polar wander path as it is currently defined is incorrect.</p> / Thesis / Bachelor of Science (BSc)
174

Advancements in Supercapacitor Technology: Experimental and Theoretical Investigations on Surface Modification of Magnetite Nanoparticles with Enhanced Performance / Surface Modification of Magnetite for Supercapacitors: Experiment and Theory

Boucher, Coulton 11 1900 (has links)
Supercapacitors have emerged as a promising energy storage technology with unique characteristics that set them apart from conventional batteries and capacitors. Supercapacitors bridge the gap between these two technologies by combining the high power density of capacitors with the high energy storage capacity of batteries, offering a compelling solution for various applications. In the pursuit of enhancing supercapacitor performance, magnetite (Fe3O4) has been researched as a potential anode material. Fe3O4 offers several desirable properties, including high theoretical capacitance, low cost, and environmental friendliness. Compositing Fe3O4 with conductive additives has served to address the issue of limited conductivity in Fe3O4 anodes for practical uses, however, a focus must be shifted to enhancing the capacitive performance of such anodes to unlock their full potential. Achieving the full potential of Fe3O4 for supercapacitor applications requires addressing challenges in the colloidal fabrication of high-active mass electrodes. This is done by exploring the exceptional adsorption properties of two dispersing and capping agents: 3,4-dihydroxybenzoic acid and murexide. Exceptional adsorption properties of catecholate-type 3,4-dihydroxybenzoic acid molecules were explored for surface modification of Fe3O4 nanoparticles to enhance their colloidal dispersion as verified by sedimentation test results and Fourier-transform infrared spectroscopy measurements. Electrodes prepared in the presence of 3,4-dihydroxybenzoic acid exhibited nearly double the capacitance at slow charging rates as compared to the control samples without the dispersant or with benzoic acid as a non-catecholate dispersant. Density functional theory analysis of adsorption behavior of 3,4-dihydroxybenzoic acid and benzoic acid at the (001) surface of Fe3O4 corroborated these experimental results by providing an understanding of the basic mechanism of 3,4-dihydroxybenzoic acid adsorption on the surface of nanoparticles. Furthermore, murexide for surface modification of Fe3O4 nanoparticles effectively enhanced the performance of multi-walled carbon nanotube-Fe3O4 supercapacitor anodes. Our experimental results demonstrate significant improvements in electrode performance when murexide is used as a capping or dispersing agent compared to the case with no additives. From impedance measurements, we revealed a substantial decrease in the real part of impedance for samples prepared with murexide, indicating easier charge transfer at more negative electrode potentials, and reinforcing the role of murexide as a capping agent and charge transfer mediator. The theoretical investigation allowed us to identify the nature of chemical bonds between murexide and the surface, with significant charge transfer taking place between the Fe3O4 surface and murexide adsorbate. / Thesis / Master of Applied Science (MASc)
175

The Fe-oxides (mineralogical, chemical, and textural) variation in the Leveäniemi deposit using micro-analytical tools for unraveling of primary features and metamorphic recrystallisation

Larsson, Adrian January 2022 (has links)
The Leveäniemi iron oxide apatite (IOA) deposit, mined by LKAB, is located in Norrbotten, northern Sweden. The deposit has a partially more complex mineralogy than the neighbouring and more famous IOA deposits of Kiirunavaara and Malmberget. The Leveäniemi deposit contains comparatively more ore containing both magnetite and hematite but also maghemite and with slightly different trace element chemistry of the iron oxide minerals. Hematite is currently not considered a valuable mineral in the Svappavaara mineral processing and in the magnetite concentrate titanium and vanadium are considered to be penalty elements. Ore samples were collected from selected drill cores and from these polished thin sections were prepared that were investigated by optical microscopy, EPMA, and FE-SEM-EDS. Investigations focused on iron oxide mineralogy and mineral chemistry with special consideration to titanium and vanadium as those elements are considered deleterious in subsequent blast furnace or direct reduction processes. Investigations revealed that magnetite is the predominant mineral with secondary hematite being the second most abundant iron oxide mineral. In the investigated samples vanadium concentration in magnetite ranges from 0.12 to 0.32% V2O3 with higher concentrations in the southern part of the deposit. No such conclusions regarding spatial distribution could be done for titanium. Furthermore, the investigations indicated that alteration from primary magnetite to secondary hematite does not significantly affect the trace element chemistry of the minerals. Titanium in iron oxides occurs as either inclusions or lamellae of titanium oxide minerals. Vanadium in iron oxides occur as a substitution element and does not occur in stochiometric vanadium minerals. It is considered unfeasible to lower the content of these deleterious elements by physical separation methods. / Leveäniemi är en järnoxid-apatitfyndighet (IOA) i Norrbotten som bryts av LKAB. Fyndigheten har en delvis mer komplex mineralogi än de närliggande och mer kända IOA-fyndigheterna Kiirunavaara och Malmberget. Leveäniemifyndigheten innehåller jämförelsevis mer malm innehållande både magnetit och hematit men även maghemit samt med något annorlunda spårämneskemi i järnoxidmineralen. Hematit anses inte i nuläget vara ett värdemineral i Svappavaaras malmförädling och i magnetitekoncentratet anses titan och vanadin utgöra straffelement. Malmprov togs från utvalda borrkärnor och från dessa tillverkades polerade tunnslip som undersöktes med optisk mikroskopering, EPMA och FE-SEM-EDS. Undersökningarna var fokuserade på järnoxidernas mineralogi och mineralkemi med speciellt fokus på titan och vanadin då grundämnena anses vara skadliga i efterföljande masugns- eller direktreduktionsprocesser. Undersökningarna visade att magnetit är det dominerade mineralet med sekundär hematit som det näst vanligaste förekommande järnoxidsmineralet. I de undersökta proven varierade vanadinhalten från 0,12% till 0,32% V2O3 med högre halter i fyndigheten södra delar. Inga liknande slutsatser angående rumsliga fördelningen av titan kunde göras. Vidare så indikerade undersökningarna att omvandling från primär magnetit till sekundär hematit inte nämnvärt påverkar spårämneskemin i mineralen. Titan i järnoxider förekommer antingen som inneslutning eller lameller av titanoxidsmineral. Vanadin i järnoxider förekommer som ett substitutionselement och förekommer inte som stökiometriska vanadinmineral. Det anses inte vara tekniskt eller ekonomiskt möjligt att sänka halterna av dessa skadliga grundämnen med hjälp av fysiska separationsmetoder.
176

Abiotic Reduction of Nitrite and Nitrate by Nanoscale Chemogenic Magnetite: Pathways for Significant Greenhouse Gas Production

Burdsall, Adam Charles 11 September 2013 (has links)
No description available.
177

Quadrupole Magnetic Sorting (QMS) of Porcine Islets of Langerhans

Shenkman, Rustin M. 12 January 2009 (has links)
No description available.
178

Iron Oxide Nanoparticle Surface Modification: Synthesis and Characterization

Hoff, Richard January 2019 (has links)
Multifunctional nanomaterials can be engineered to aid in the diagnosis of diseases, enable efficient drug delivery, monitor treatment progress over time, and evaluate treatment outcomes. This strategy, known as theranostics, focuses on the combination of diagnostic and therapeutic techniques to provide new clinically safe and efficient personalized treatments. The evaluation of different nanomaterials’ properties and their customization for specific medical applications has therefore been a significant area of interest within the scientific community. Iron oxide nanoparticles, specifically those based on iron (II, III) oxide (magnetite, Fe3O4), have been prominently investigated for biomedical, theranostic applications due to their documented superparamagnetism, high biocompatibility, and other unique physicochemical properties. The aim of this thesis is to establish a viable set of methods for preparing magnetite (iron oxide) nanoparticles through hydrothermal synthesis and modifying their surfaces with organic functional groups in order to both modulate surface chemistry and facilitate the attachment of molecules such as peptides via covalent bond formations. Modifying their surfaces with biomolecules such as peptides can further increase their uptake into cells, which is a necessary step in the mechanisms of their desired biomedical applications. The methods of nanoparticle synthesis, surface functionalization, and characterization involving electron microscopy (e.g., SEM, TEM), zeta potential measurements, size analysis (i.e., DLS), and FT-IR spectroscopy will be presented. / Bioengineering
179

Magnetite Mineralization of the Hammondville Pluton: Poly-Phase Kiruna Type IOCG Magnetite-Apatite Deposits in the Lyon Mountain Granite

Geer, Phillip 18 December 2020 (has links) (PDF)
Recent mapping of the Eagle Lake Quadrangle, NY, coupled with whole-rock geochemistry and microscopy has offered insight into the petrogenesis of the magnetite-apatite deposits of the Hammondville mining district in the eastern Adirondack Mountains. This study provides insight into the magmatic history of the ca. 1060-1050 Ma Lyon Mountain Granite (Hammondville Pluton) which is intimately related to, and hosts the deposits in this area. Magnetite seams are commonly surrounded by well layered magnetite gneiss, which typically parallel the seams, although in some outcrops appear to be slightly truncated by them. Mineralization is generally concordant with the weak layering found throughout the rest of the pluton, and similarly lacks a pervasive metamorphic fabric. Sub-solidus deformation is recorded in some localized shear zones that occur in both the seams and host-granite indicating post-crystallization and post-mineralization deformation events. These episodes could have provided conduits for fluids responsible for growing younger zircon that past workers dated and interpreted as a separate time of mineralization. We conclude that magnetite mineralization likely occurred as separate magma, or magnetite rich fluid, injected into the Lyon Mountain Granite either as a syn-magmatic process, or while it was still a crystalline mush.
180

Physical Properties of Macromolecule-metal oxide nanoparticle complexes: Magnetophoretic Mobility, Size, and Interparticle Potentials

Mefford, Olin Thompson 09 August 2007 (has links)
Magnetic nanoparticles coated with polymers hold great promise as materials for applications in biotechnology. In this body of work, magnetic fluids for the treatment of retinal detachment are examined closely in three regimes; motion of ferrofluid droplets in aqueous media, size analysis of the polymer-iron oxide nanoparticles, and calculation of interparticle potentials as a means for predicting fluid stability. The macromolecular ferrofluids investigated herein are comprised of magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers. The nanoparticles were formed by reacting stoichiometric concentrations of iron chloride salts with base. After the magnetite particles were prepared, the functional PDMS oligomers were adsorbed onto the nanoparticle surfaces. The motion of ferrofluid droplets in aqueous media was studied using both theoretical modeling and experimental verification. Droplets (~1-2 mm in diameter) of ferrofluid were moved through a viscous aqueous medium by an external magnet of measured field and field gradient. Theoretical calculations were made to approximate the forces on the droplet. Using the force calculations, the times required for the droplet to travel across particular distances were estimated. These estimated times were within close approximation of experimental values. Characterization of the sizes of the nanoparticles was particularly important, since the size of the magnetite core affects the magnetic properties of the system, as well as the long-term stability of the nanoparticles against flocculation. Transmission electron microscopy (TEM) was used to measure the sizes and size distributions of the magnetite cores. Image analyses were conducted on the TEM micrographs to measure the sizes of approximately 6000 particles per sample. Distributions of the diameters of the magnetite cores were determined from this data. A method for calculating the total particle size, including the magnetite core and the adsorbed polymer, in organic dispersions was established. These estimated values were compared to measurements of the entire complex utilizing dynamic light scattering (DLS). Better agreement was found for narrow particle size distributions as opposed to broader distributions. The stability against flocculation of the complexes over time in organic media were examined via modified Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations. DLVO theory allows for predicting the total particle-particle interaction potentials, which include steric and electrostatic repulsions as well as van der Waals and magnetic attractions. The interparticle potentials can be determined as a function of separation of the particle surfaces. At a constant molecular weight of the polymer dispersion stabilizer, these calculations indicated that dispersions of smaller PDMS-magnetite particles should be more stable than those containing larger particles. The rheological characteristics of neat magnetite-PDMS complexes (i.e, no solvent or carrier fluid were present) were measured over time in the absence of an applied magnetic field to probe the expected properties upon storage. The viscosity of a neat ferrofluid increased over the course of a month, indicating that some aggregation occurred. However, this effect could be removed by shearing the fluids at a high rate. This suggests that the particles do not irreversibly flocculate under these conditions. / Ph. D.

Page generated in 0.038 seconds