• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 23
  • 21
  • 20
  • 11
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 275
  • 275
  • 240
  • 69
  • 48
  • 46
  • 32
  • 28
  • 27
  • 26
  • 25
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Mixed-Response Intelligent Tutoring System Based on Learning from Demonstration

Alvarez Xochihua, Omar 2012 May 1900 (has links)
Intelligent Tutoring Systems (ITS) have a significant educational impact on student's learning. However, researchers report time intensive interaction is needed between ITS developers and domain-experts to gather and represent domain knowledge. The challenge is augmented when the target domain is ill-defined. The primary problem resides in often using traditional approaches for gathering domain and tutoring experts' knowledge at design time and conventional methods for knowledge representation built for well-defined domains. Similar to evolving knowledge acquisition approaches used in other fields, we replace this restricted view of ITS knowledge learning merely at design time with an incremental approach that continues training the ITS during run time. We investigate a gradual knowledge learning approach through continuous instructor-student demonstrations. We present a Mixed-response Intelligent Tutoring System based on Learning from Demonstration that gathers and represents knowledge at run time. Furthermore, we implement two knowledge representation methods (Weighted Markov Models and Weighted Context Free Grammars) and corresponding algorithms for building domain and tutoring knowledge-bases at run time. We use students' solutions to cybersecurity exercises as the primary data source for our initial framework testing. Five experiments were conducted using various granularity levels for data representation, multiple datasets differing in content and size, and multiple experts to evaluate framework performance. Using our WCFG-based knowledge representation method in conjunction with a finer data representation granularity level, the implemented framework reached 97% effectiveness in providing correct feedback. The ITS demonstrated consistency when applied to multiple datasets and experts. Furthermore, on average, only 1.4 hours were needed by instructors to build the knowledge-base and required tutorial actions per exercise. Finally, the ITS framework showed suitable and consistent performance when applied to a second domain. These results imply that ITS domain models for ill-defined domains can be gradually constructed, yet generate successful results with minimal effort from instructors and framework developers. We demonstrate that, in addition to providing an effective tutoring performance, an ITS framework can offer: scalability in data magnitude, efficiency in reducing human effort required for building a confident knowledge-base, metacognition in inferring its current knowledge, robustness in handling different pedagogical and tutoring criteria, and portability for multiple domain use.
72

Efficient Methods for Automatic Speech Recognition

Seward, Alexander January 2003 (has links)
This thesis presents work in the area of automatic speech recognition (ASR). The thesis focuses on methods for increasing the efficiency of speech recognition systems and on techniques for efficient representation of different types of knowledge in the decoding process. In this work, several decoding algorithms and recognition systems have been developed, aimed at various recognition tasks. The thesis presents the KTH large vocabulary speech recognition system. The system was developed for online (live) recognition with large vocabularies and complex language models. The system utilizes weighted transducer theory for efficient representation of different knowledge sources, with the purpose of optimizing the recognition process. A search algorithm for efficient processing of hidden Markov models (HMMs) is presented. The algorithm is an alternative to the classical Viterbi algorithm for fast computation of shortest paths in HMMs. It is part of a larger decoding strategy aimed at reducing the overall computational complexity in ASR. In this approach, all HMM computations are completely decoupled from the rest of the decoding process. This enables the use of larger vocabularies and more complex language models without an increase of HMM-related computations. Ace is another speech recognition system developed within this work. It is a platform aimed at facilitating the development of speech recognizers and new decoding methods. A real-time system for low-latency online speech transcription is also presented. The system was developed within a project with the goal of improving the possibilities for hard-of-hearing people to use conventional telephony by providing speech-synchronized multimodal feedback. This work addresses several additional requirements implied by this special recognition task. / QC 20100811
73

PELICAN : a PipELIne, including a novel redundancy-eliminating algorithm, to Create and maintain a topicAl family-specific Non-redundant protein database

Andersson, Christoffer January 2005 (has links)
The increasing number of biological databases today requires that users are able to search more efficiently among as well as in individual databases. One of the most widespread problems is redundancy, i.e. the problem of duplicated information in sets of data. This thesis aims at implementing an algorithm that distinguishes from other related attempts by using the genomic positions of sequences, instead of similarity based sequence comparisons, when making a sequence data set non-redundant. In an automatic updating procedure the algorithm drastically increases the possibility to update and to maintain the topicality of a non-redundant database. The procedure creates a biologically sound non-redundant data set with accuracy comparable to other algorithms focusing on making data sets non-redundant
74

Convergence in distribution for filtering processes associated to Hidden Markov Models with densities

Kaijser, Thomas January 2013 (has links)
A Hidden Markov Model generates two basic stochastic processes, a Markov chain, which is hidden, and an observation sequence. The filtering process of a Hidden Markov Model is, roughly speaking, the sequence of conditional distributions of the hidden Markov chain that is obtained as new observations are received. It is well-known, that the filtering process itself, is also a Markov chain. A classical, theoretical problem is to find conditions which implies that the distributions of the filtering process converge towards a unique limit measure. This problem goes back to a paper of D Blackwell for the case when the Markov chain takes its values in a finite set and it goes back to a paper of H Kunita for the case when the state space of the Markov chain is a compact Hausdor space. Recently, due to work by F Kochmann, J Reeds, P Chigansky and R van Handel, a necessary and sucient condition for the convergence of the distributions of the filtering process has been found for the case when the state space is finite. This condition has since been generalised to the case when the state space is denumerable. In this paper we generalise some of the previous results on convergence in distribution to the case when the Markov chain and the observation sequence of a Hidden Markov Model take their values in complete, separable, metric spaces; it has though been necessary to assume that both the transition probability function of the Markov chain and the transition probability function that generates the observation sequence have densities.
75

Temporal pattern recognition in noisy non-stationary time series based on quantization into symbolic streams. Lessons learned from financial volatility trading.

Tino, Peter, Schittenkopf, Christian, Dorffner, Georg January 2000 (has links) (PDF)
In this paper we investigate the potential of the analysis of noisy non-stationary time series by quantizing it into streams of discrete symbols and applying finite-memory symbolic predictors. The main argument is that careful quantization can reduce the noise in the time series to make model estimation more amenable given limited numbers of samples that can be drawn due to the non-stationarity in the time series. As a main application area we study the use of such an analysis in a realistic setting involving financial forecasting and trading. In particular, using historical data, we simulate the trading of straddles on the financial indexes DAX and FTSE 100 on a daily basis, based on predictions of the daily volatility differences in the underlying indexes. We propose a parametric, data-driven quantization scheme which transforms temporal patterns in the series of daily volatility changes into grammatical and statistical patterns in the corresponding symbolic streams. As symbolic predictors operating on the quantized streams we use the classical fixed-order Markov models, variable memory length Markov models and a novel variation of fractal-based predictors introduced in its original form in (Tino, 2000b). The fractal-based predictors are designed to efficiently use deep memory. We compare the symbolic models with continuous techniques such as time-delay neural networks with continuous and categorical outputs, and GARCH models. Our experiments strongly suggest that the robust information reduction achieved by quantizing the real-valued time series is highly beneficial. To deal with non-stationarity in financial daily time series, we propose two techniques that combine ``sophisticated" models fitted on the training data with a fixed set of simple-minded symbolic predictors not using older (and potentially misleading) data in the training set. Experimental results show that by quantizing the volatility differences and then using symbolic predictive models, market makers can generate a statistically significant excess profit. However, with respect to our prediction and trading techniques, the option market on the DAX does seem to be efficient for traders and non-members of the stock exchange. There is a potential for traders to make an excess profit on the FTSE 100. We also mention some interesting observations regarding the memory structure in the studied series of daily volatility differences. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
76

Actuarial Inference and Applications of Hidden Markov Models

Till, Matthew Charles January 2011 (has links)
Hidden Markov models have become a popular tool for modeling long-term investment guarantees. Many different variations of hidden Markov models have been proposed over the past decades for modeling indexes such as the S&P 500, and they capture the tail risk inherent in the market to varying degrees. However, goodness-of-fit testing, such as residual-based testing, for hidden Markov models is a relatively undeveloped area of research. This work focuses on hidden Markov model assessment, and develops a stochastic approach to deriving a residual set that is ideal for standard residual tests. This result allows hidden-state models to be tested for goodness-of-fit with the well developed testing strategies for single-state models. This work also focuses on parameter uncertainty for the popular long-term equity hidden Markov models. There is a special focus on underlying states that represent lower returns and higher volatility in the market, as these states can have the largest impact on investment guarantee valuation. A Bayesian approach for the hidden Markov models is applied to address the issue of parameter uncertainty and the impact it can have on investment guarantee models. Also in this thesis, the areas of portfolio optimization and portfolio replication under a hidden Markov model setting are further developed. Different strategies for optimization and portfolio hedging under hidden Markov models are presented and compared using real world data. The impact of parameter uncertainty, particularly with model parameters that are connected with higher market volatility, is once again a focus, and the effects of not taking parameter uncertainty into account when optimizing or hedging in a hidden Markov are demonstrated.
77

The Continuous Speech Recognition System Base on Hidden Markov Models with One-Stage Dynamic Programming Algorithm.

Hsieh, Fang-Yi 03 July 2003 (has links)
Based on Hidden Markov Models (HMM) with One-Stage Dynamic Programming Algorithm, a continuous-speech and speaker-independent Mandarin digit speech recognition system was designed in this work. In order to implement this architecture to fit the performance of hardware, various parameters of speech characteristics were defined to optimize the process. Finally, the ¡§State Duration¡¨ and the ¡§Tone Transition Property Parameter¡¨ were extracted from speech temporal information to improve the recognition rate. Via using the test database, experimental results show that this new ideal of one-stage dynamic programming algorithm , with ¡§state duration¡¨ and ¡§ tone transition property parameter¡¨ , will have 18% recognition rate increase when compare to the conventional one. For speaker-independent and connect-word recognition, this system will achieve recognition rate to 74%. For speaker-independent but isolate-word recognition, it will have recognition rate higher than 96%. Recognition rate of 92% is obtained as this system is applied to the connect-word speaker-dependent recognition.
78

Improving the efficacy of automated sign language practice tools

Brashear, Helene Margaret 07 July 2010 (has links)
The CopyCat project is an interdisciplinary effort to create a set of computer-aided language learning tools for deaf children. The CopyCat games allow children to interact with characters using American Sign Language (ASL). Through Wizard of Oz pilot studies we have developed a set of games, shown their efficacy in improving young deaf children's language and memory skills, and collected a large corpus of signing examples. Our previous implementation of the automatic CopyCat games uses automatic sign language recognition and verification in the infrastructure of a memory repetition and phrase verification task. The goal of my research is to expand the automatic sign language system to transition the CopyCat games to include the flexibility of a dialogue system. I have created a labeling ontology from analysis of the CopyCat signing corpus, and I have used the ontology to describe the contents of the CopyCat data set. This ontology was used to change and improve the automatic sign language recognition system and to add flexibility to language use in the automatic game.
79

PELICAN : a PipELIne, including a novel redundancy-eliminating algorithm, to Create and maintain a topicAl family-specific Non-redundant protein database

Andersson, Christoffer January 2005 (has links)
<p>The increasing number of biological databases today requires that users are able to search more efficiently among as well as in individual databases. One of the most widespread problems is redundancy, i.e. the problem of duplicated information in sets of data. This thesis aims at implementing an algorithm that distinguishes from other related attempts by using the genomic positions of sequences, instead of similarity based sequence comparisons, when making a sequence data set non-redundant. In an automatic updating procedure the algorithm drastically increases the possibility to update and to maintain the topicality of a non-redundant database. The procedure creates a biologically sound non-redundant data set with accuracy comparable to other algorithms focusing on making data sets non-redundant</p>
80

Integrative assistive system for dyslexic learners using hidden Markov models.

Ndombo, Mpia Daniel January 2013 (has links)
D. Tech. Computer Science and Data Processing / The general research question is aimed at how to implement an integrative assistive system for dyslexic learners (IASD), which combines all their three major literacy barriers (phonological awareness, reading and writing skills) in one system. The main research question is therefore as follows: How can a framework for integrative assistive system be developed to mitigate learning barriers (DLB) using hidden Markov model machine learning techniques (HMM)?

Page generated in 0.0553 seconds