• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 110
  • 35
  • 4
  • Tagged with
  • 264
  • 152
  • 130
  • 125
  • 60
  • 52
  • 52
  • 52
  • 48
  • 43
  • 36
  • 25
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Lipid rafts in protein sorting and yeast cell polarity

Klemm, Robin 18 July 2007 (has links) (PDF)
The major sorting station of biosynthetic material destined for the cell surface or secretion is the trans Golgi Network, TGN. This organelle sorts proteins and lipids into vesicular transport carriers that are targeted via different pathways to distinct membrane compartments of the cell. The molecular principles that operate in cargo sorting at the TGN are still not very well understood. Especially, we know very little about the sorting of lipids. It was postulated that a sorting mechanism based on clustering of lipid rafts, dynamic membrane domains enriched in sphingolipids and sterols, could be an important part of the picture. My thesis study dealt with the elucidation of the molecular sorting principles at the TGN and their exploitation for cell surface polarity in the yeast Saccharomyces cerevisiae. To this end, we conducted a genome wide screen that identified yeast mutants defective in cell surface delivery of the model cargo protein FusMid-GFP. The most striking result of this screen was that mutant strains with defects in ergosterol (the major yeast sterol) and sphingolipid biosynthesis lost sorting competence. To elucidate a direct role for sphingolipids and ergosterol in cargo sorting and secretion we sought to characterize the lipid composition of secretory vesicles. Hence, we established a vesicle purification protocol based on an immunoisolation strategy. Additionally, in collaboration with the group of A. Shevchenko, we developed a mass spectrometry methodology that allows the comprehensive and quantitative lipid analysis of subcellular organelles. Preliminary results corroborate our genetic evidence. The data show that the vesicles are enriched in sphingolipids and decreased in phosphatidylcholine indicating a role for raft clustering in cargo sorting at the TGN. The studies of cell polarity during yeast mating also unraveled a role for raft clustering. We could identify that the lipid bilayer at the tip of the mating projection was more ordered than at the plasma membrane enclosing the cell body and that this was dependent on sphingolipid synthesis. The results of my thesis suggest that in the yeast Saccharomyces cerevisiae fundamental cell biological processes such as cargo sorting and vesicle formation at the TGN as well as cell surface polarity during mating employ raft clustering mechanisms.
162

Characterization of population heterogeneity in a model biotechnological process using Pseudomonas putida

Jahn, Michael 09 September 2015 (has links) (PDF)
Biotechnological processes are distinguished from classical chemistry by employing bio-molecules or whole cells as the catalytic element, providing unique reaction mechanisms with unsurpassed specificity. Whole cells are the most versatile \'factories\' for natural or non-natural products, however, the conversion of e.g. hydrophobic substrates can quickly become cytotoxic. One host organism with the potential to handle such conditions is the gram-negative bacterium Pseudomonas putida, which distinguishes itself by solvent tolerance, metabolic flexibility, and genetic amenability. However, whole cell bioconversions are highly complex processes. A typical bottleneck compared to classical chemistry is lower yield and reproducibility owing to cell-to-cell variability. The intention of this work was therefore to characterize a model producer strain of P. putida KT2440 on the single cell level to identify non-productive or impaired subpopulations. Flow cytometry was used in this work to discriminate subpopulations regarding DNA content or productivity, and further mass spectrometry or digital PCR was employed to reveal differences in protein composition or plasmid copy number. Remarkably, productivity of the population was generally bimodally distributed comprising low and highly producing cells. When these two subpopulations were analyzed by mass spectrometry, only few metabolic changes but fundamental differences in stress related proteins were found. As the source for heterogeneity remained elusive, it was hypothesized that cell cycle state may be related to production capacity of the cells. However, subpopulations of one, two, or higher fold DNA content were virtually identical providing no clear hints for regulatory differences. On the quest for heterogeneity the loss of genetic information came into focus. A new work flow using digital PCR was created to determine the absolute number of DNA copies per cell and, finally, lack of expression could be attributed to loss of plasmid in non-producing cells. The average plasmid copy number was shown to be much lower than expected (1 instead of 10-20). In conclusion, this work established techniques for the quantification of proteins and DNA in sorted subpopulations, and by these means provided a highly detailed picture of heterogeneity in a microbial population.
163

Untersuchung des Sekretoms chondrogener Progenitorzellen mittels metabolischer Markierung und quantitativer Massenspektrometrie / Research of the secretome of chondrogenic progenitor cells by metabolic labeling and quantitative mass spectrometry

Gaida, Sarah 19 June 2012 (has links)
No description available.
164

Metabolite aus marinen und terrestrischen Bakterien und Pilzen sowie Untersuchungen von Invertebraten der Tiefsee / Metabolites of marine and terrestrial Bacterias and Fungis as well as Investigations of Invertebrates from the deep sea

Schulze, Andrea 08 May 2003 (has links)
No description available.
165

Characterization of the Munc13 - CaM Interaction / Charakterisierung der Munc13-CaM-Wechselwirkung

Dimova, Kalina 04 May 2009 (has links)
No description available.
166

Investigation of Protein Structure and Dynamics / Untersuchungen von Proteinstruktur und Proteindynamik

Frank, Benedikt Tobias Carl 15 July 2009 (has links)
No description available.
167

Regulation der „spleen tyrosine kinase“ Syk im B-Zell-Antigen-Rezeptor-Signalweg / Regulation of the "spleen tyrosine kinase" Syk in the B-cell antigen receptor signaling pathway

Bohnenberger, Hanibal 14 January 2014 (has links)
No description available.
168

TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration

Andreasen, Birgitta, Tanenbaum, David M., Hermenau, Martin, Voroshazi, Eszter, Lloyd, Matthew T., Galagan, Yulia, Zimmernann, Birger, Kudret, Suleyman, Maes, Wouter, Lutsen, Laurence, Vanderzande, Dirk, Würfel, Uli, Andriessen, Ronn, Rösch, Roland, Hoppe, Harald, Teran-Escobar, Gerardo, Lira-Cantu, Monica, Rivaton, Agnès, Uzunoğlu, Gülşah Y., Germack, David S., Hösel, Markus, Dam, Henrik F., Jørgensen, Mikkel, Gevorgyan, Suren A., Madsen, Morten V., Bundgaard, Eva, Krebs, Frederik C., Norrman, Kion 07 April 2014 (has links) (PDF)
The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
169

Tagging methods as a tool to investigate histone H3 methylation dynamics in mouse embryonic stem cells

Ciotta, Giovanni 20 July 2011 (has links) (PDF)
Covalent modification of histones is an important factor in the regulation of the chromatin structure implicated in DNA replication, repair, recombination, and transcription, as well as in RNA processing. In recent years, histone methylation has emerged as one of the key modifications regulating chromatin function. However, the mechanisms involved are complex and not well understood. Histone 3 lysine 4 (H3K4) methylation is deposited by a family of histone H3K4 methyltransferases (HMTs) that share a conserved SET domain. In mammalian cells, six family members have been characterized: Setd1a and Setd1b (the mammalian orthologs of yeast Set1) and four Mixed lineage leukemia (Mll) family HMTs, which share limited similarity with yeast Set1 beyond the SET domain. Several studies demonstrated that the H3K4 methyltransferases exist as multiprotein complexes. To functionally dissect H3K4 methyltransferase complexes, GFP tagging of the core subunit Ash2l and the complex-specific subunits Cxxc1 and Wdr82 (Setd1a/b complexes) Men1 (Mll1/2 complexes), and Ptip (Mll3/Mll4 complexes), was used. The fusion proteins were successfully expressed in mouse embryonic stem cells (ES cells), analyzed by confocal microscopy, Mass Spectrometry (MS) and ChIP-seq. Ptip was the only subunit able to bind mitotic chromatin. Additionally, both Ptip and Wdr82 were found to associate with cell cycle regulators, suggesting a possible role of the two proteins or respective complexes in cell cycle regulation. Mass Spectrometry revealed that Wdr82 and Ptip interact with members of he PAF complex, and ChIP-seq showed that Wdr82, Cxxc1 and Ptip positively modulate pluripotency genes. Thus, Setd1a/b and Mll3/4 complexes might act together in the regulation of embryonic stem cells identity. Protein pull downs identified at least one new Setd1a/b interactor, Bod1l that is orthologous to the yeast protein Sgh1, a component of the Set1C complex. Furthermore, our MS and ChIP-seq data suggested that only Mll2 complex binds to bivalent promoters, wheras Mll2 and Setd1a complexes might function together in a set of promoters.
170

Matrixunabhängige Elementbestimmung in Polymeren mittels Massenspektrometrie mit Induktiv Gekoppeltem Plasma nach Laserablation

Deiting, Daniel 27 July 2017 (has links) (PDF)
Die Analyse von organischen Polymeren mittels Massenspektrometrie mit induktiv gekoppeltem Plasma nach Laserablation unterliegt starken Matrixeffekten. Mögliche Korrekturmodelle sollten basierend auf der tatsächlich ablatierten Elementmasse sowie der Signalintensität des Kohlenstoffisotops C-13 (13C-Korrektur) entworfen werden. Damit die 13C-Korrektur erfolgreich verlaufen kann, ist ein direkter Zusammenhang zwischen ablatiertem Kohlenstoff und gemessenem 13C-ICP-MS Signal erforderlich. Dies wurde überprüft, indem unter Anwendung der konfokalen Mikroskopie das Ablationskratervolumen bestimmt und der ablatierte Kohlenstoff berechnet wurde. Dieser Zusammenhang konnte sowohl für undotierte, wie auch für elementdotierte Polymere und die Verwendung verschiedener Ablationsgase (Helium, Argon und Sauerstoff) ermittelt werden. Eigens hergestellte polymere elementdotierte Standardmaterialien wurden hinsichtlich der Matrixeffekte charakterisiert. Als größter Einflussfaktor stellte sich die unterschiedliche Ablationsrate bei der Ablation verschiedener Polymere heraus. Unter Anwendung der tatsächlich ablatierten Elementmasse sowie unter Anwendung der 13C-Korrektur konnte die Matrixabhängigkeit deutlich verringert werden.

Page generated in 0.0639 seconds