• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Imaging of Shallow Carbonate and Shale Hosted Massive Sulphide Deposits: A Feasibility Study

Quigley, Laura 10 December 2013 (has links)
Seismic imaging of shallow sediment hosted massive sulphides has not been studied in detail. In this research two shallow sediment hosted massive sulphide deposits (one deeper and larger than the other) were modeled and synthetic seismic data generated using a 2D elastic wavefield finite difference code. F-k filtering can be used to attenuating surface waves (conventional processing). This requires small trace spacing so that spatially aliasing of energy is avoided. An alternative to this involves avoiding the surface wave using an optimum offset window technique. Both of these approaches, attenuation and avoidance, produce a high amplitude image of the deeper larger orebody. For the smaller, shallower orebody, conventional processing produced only a weak image of the orebody. However, there is a significant amount of shear wave energy from this target, and therefore multicomponent geophones should be used to capture this energy.
2

Seismic Imaging of Shallow Carbonate and Shale Hosted Massive Sulphide Deposits: A Feasibility Study

Quigley, Laura 10 December 2013 (has links)
Seismic imaging of shallow sediment hosted massive sulphides has not been studied in detail. In this research two shallow sediment hosted massive sulphide deposits (one deeper and larger than the other) were modeled and synthetic seismic data generated using a 2D elastic wavefield finite difference code. F-k filtering can be used to attenuating surface waves (conventional processing). This requires small trace spacing so that spatially aliasing of energy is avoided. An alternative to this involves avoiding the surface wave using an optimum offset window technique. Both of these approaches, attenuation and avoidance, produce a high amplitude image of the deeper larger orebody. For the smaller, shallower orebody, conventional processing produced only a weak image of the orebody. However, there is a significant amount of shear wave energy from this target, and therefore multicomponent geophones should be used to capture this energy.
3

The geology and genesis of massive sulphide, barite-gold deposits on Wetar Island, Indonesia

Scotney, Philip M. January 2002 (has links)
No description available.
4

Oxidation zones of volcanogenic massive sulphide deposits in the Troodos Ophiolite, Cyprus : targeting secondary copper deposits

Parvaz, Daniel Bijan January 2014 (has links)
Gossans, the brightly coloured oxidation products of sulphide mineralised rocks, have acted as an exploration target for base and precious metals and sulphur for thousands of years. They are easily identified from remote sensing and field-based reconnaissance, and once found may be drilled to determine the character of mineralisation below. The number of targets drilled could potentially be reduced if gossans overlying significant mineralisation can be discriminated from their field relations, mineralogy and geochemistry. Previous such studies have focussed on porphyry-type systems, with less attention on the generally much lower tonnage volcanogenic massive sulphide (VMS) deposits. However, VMS continue to provide an economically important source of metals in Europe and elsewhere. The Troodos Massif in Cyprus was chosen for this study as it hosts a currently active Cu mine along with historically worked VMS, is little deformed and has a relatively well understood geological framework. Of particular interest are secondary Cu deposits (SCUD) which form due to weathering of primary massive sulphides (PMS). These can be worked at relatively lower financial and environmental cost, and at much lower grades (down to around 0.1 % Cu). The only currently mined SCUD in Cyprus is the Phoenix ore body at Skouriotissa, which lies immediately adjacent to, and structurally below the Phoukasa PMS. The questions addressed in this study are: 1) Do Cypriot PMS that were mined for Cu show original Cu enrichments, or is their elevated Cu content a result of supergene enrichment to form an SCUD? This was addressed by comparing the mineralogical, chemical and S isotopic compositions of PMS mined for Cu with those mined for pyrite only from across the Troodos; 2) Do gossans formed from Cu-rich sulphides show distinctive mineralogical and chemical signatures? The characteristics of gossans known to overlie prospective sulphide bodies were compared with those from barren PMS; 3) What circumstances promote the formation of SCUDs? In particular, did sulphide oxidation occur on the sea floor or in a terrestrial environment? It was considered likely that SCUD formation may require sea floor oxidation because this will result in limited Cu dispersion, due to both sharp pH and redox gradients and limited fluid flow when compared with terrestrial weathering, where the depth to the water table can be considerable. The question was addressed by comparing the field relations, chemistry and S and O isotope compositions of gossans thought to have formed on the sea floor (Skouriotissa - Phoenix) with those generated in a terrestrial setting (Kokkinopezoula, Mathiati and Sia). The remnants of primary VMS deposits mined for Cu in Cyprus (Phoukasa, Sia and Troulli) almost exclusively contain primary Cu sulphides such as chalcopyrite. Secondary Cu sulphides, mainly chalcocite and covellite, are only present in significant concentrations at Phoukasa and Troulli, with Cu oxides being found in Phoenix. At Phoukasa, secondary Cu sulphides have a mean δ34S = 3.69±0.08 ‰ similar to primary pyrite and chalcopyrite (mean δ34S = 3.78±0.08 ‰) suggesting formation from Cu-rich fluids that scavenged S from primary sulphides. Sulphide material collected from copper mines has Cu = 840 to > 10,000 ppm at Phoukasa; 167 to 3573 ppm at Sia; 288 to > 10,000 ppm at Troulli, while the Cu-barren deposits have generally lower Cu grades (Cu = 170 to 433 ppm at Kokkinopezoula; 327 to 1303 ppm at Mathiati north). There are no systematic differences in the S isotope compositions of pyrite between deposits mined for Cu and those not (average δ34S = 1.68, 3.74 and 7.1 ‰ for Cu-rich Sia, Lysos and Phoukasa, and 5.03 and 3.70 ‰ for Cu-poor Kokkinopezoula and Mathiati North sulphides, respectively). No consistent chemical differences (including chalcophile elements) could be identified between gossans overlying Cu-rich as opposed to barren PMS. Gossans overlying the Lysos and Sia Cu-rich PMS, however, show an enrichment in Pb and Zn not observed in other gossans, and umbers, which are chemical sediments associated with VMS systems, often overlying gossans, show strong Cu enrichments in the vicinity of Cu-rich PMS. Umber samples from near the Cu-rich Phoukasa sulphide body contain > 10,000 to 35,400 ppm Cu, while those around Cu-poor Mathiati North contain 669 to 819 ppm Cu. There were no differences in the S isotope compositions of gypsum from sulphide bodies which were Cu-rich (δ34S = 5.9 to 6.9 ‰ for Sia, Phoukasa and Troulli) and Cu-poor (δ34S = 5.0 to 7.3 ‰ for Kokkinopezoula, Mathiati North). Regarding the environment of formation of SCUDs, an initial submarine oxidation of the Phoukasa VMS is considered likely as it is immediately overlain by marine pelagic sediments, while all other deposits studied are overlain by volcanics. In addition, volcanics in the vicinity of Phoukasa show large negative Ce anomalies (Ce/Ce* = 0.90 to 0.38, average = 0.71), consistent with sea floor alteration, compared with other localities such Kokkinopezoula (Ce/Ce* = 0.89 to 1.08, average = 0.97) and Sia (Ce/Ce* = 0.92 to 1.03, average = 0.99). Unfortunately, the S isotope composition of gypsum could not be used to determine the nature of the gossan-forming environment. Gypsums from all locations (average δ34S = 6.74±0.08 ‰) have δ34S values similar to, but slightly 34S enriched compared with their associated sulphides (average δ34S = 2.9±0.08 ‰) which indicates that their S isotope signature largely reflects that of S released during sulphide oxidation, as opposed to evaporation of sulphate-rich waters or direct precipitation from a similar solution (i.e., seawater). However, the oxygen isotope composition of gypsum (average δ18O = 6.2 ‰) from Sia (average δ18O = 2.4 ‰) reflects a mixture of atmospheric O (δ18O = 23.6 ‰) and Mediterranean meteoric water O (δ18O ≈-5.0 ‰), indicating a terrestrial environment of formation. Gypsum from Skouriotissa has an average δ18O = 6.6 ‰ which most likely indicates a combination of seawater and seawater-dissolved O (δ18O ≈23.5 ‰), despite some overlap with the composition of meteoric water and atmospheric O. In summary, it is proposed that the currently unique nature of Skouriotissa as hosting the only major SCUD in Cyprus is due largely to initial sea water alteration of the Phoukasa PMS resulting in limited Cu dispersion and localised Cu enrichment within the primary ore body. Subsequent uplift and alteration of the Phoukasa PMS led to the formation of a relatively high grade SCUD in the Phoenix deposit. The main outcomes of the study are a series of models for the development of gossans and associated lithologies in terrestrial and seafloor weathering environments in Cyprus. These incorporate a new term (retali) for acid leached volcanics in the footwall of PMS, and exploration-relevant field, mineralogical and chemical criteria for their discrimination from gossans, which overlie PMS. In agreement with an existing model, the formation of the Phoenix SCUD is interpreted as having been due to the downward migration of Cu-bearing acid fluids from the seafloor oxidation of the upper parts of the Phoukasa deposit. Secondary Cu mineralisation is thought to have taken place within the relatively reducing environment below the water table in lavas stratigraphically below the Phoukasa deposit. That the formation of SCUDs may require seafloor sulphide oxidation, and that this can be recognised in the mineralogy and chemical compositions of associated volcanics and gossans, provides new exploration criteria for SCUDs. However, it should be noted that the Phoenix deposit was the only SCUD examined in this study, and that this model should therefore be tested elsewhere.
5

A Mineralogical and Fluid Inclusion Study of Massive Sulphide Samples from the Juan De Fuca Ridge, Northeast Pacific Ocean

Meecham, Randy John 26 April 1990 (has links)
<p> In the past decade, sites of hydrothermal activity along the Juan de Fuca Ridge have gained a growing amount of attention. Increased sampling has provided the materials for more detailed studies, including those collected from Axial Seamount, a large shield volcano on the central portion of the ridge. Axial Seamount is host to at least three active vent sites, one of which, along the northwest caldera wall, consists of recently active eruptive-fissures and nearby chimney-like spires. A sampled spire from this location and samples from other vent areas are described using reflected and transmitted light techniques. They have been found to consist of the sulphide phases sphalerite, wurtzite, pyrite, marcasite, chalcopyrite, isocubanite, and galena. Jordanite and tetrahedrite-tennanite are also known to precipitate at these vent sites, but were not observed here. The most dominant non-sulphide minerals are amorphous silica and barite. Native sulfur, Fe and Mn oxides and a variety of sulfosalts may also be present. The complex textures in these samples reflect precipitation and growth from higher temperature fluids that are mixing with local ambient seawater. Fluid inclusions in sphalerite have revealed salinities in the 5.6 to 7.0 weight % NaCl range, with homogenization temperatures ranging from 214.8°C to 269.4°C. Temperatures of homogenization require pressure-corrections between approximately 9.0°C and 13.0°C, to set-up a range of trapping temperatures that lie between 211.8°C and 279.4°C. Fluid inclusions are also found in wurtzite, barite, and amorphous silica however, these would yield no data. Middle Valley is a sedimented rift valley that lies at the extreme north end of the Juan de Fuca Ridge. A number of hydrothermal sulphide mounds that lie atop the sediment pile have been sampled. The mineralogy is similar to that at Axial Seamount; however, the dominant sulphide phase at Middle Valley is pyrrhotite. Textural differences between the two sites are significant, a result of the traversing of hydrothermal fluids through a thick package of hemepelagic sediment at Middle Valley. Samples from Middle Valley are found to contain no measurable fluid inclusions in the sections available for study. Mineralogical and fluid inclusion studies are important methods that can be used to help solve the complex growth history of sulfides that are and have been accumulating at mid-ocean ridge vent sites.</p> / Thesis / Bachelor of Science (BSc)
6

Ore mineralogy and silver distribution at the Rävliden N volcanogenic massive sulphide deposit, Skellefte district, Sweden

Johansson, Simon January 2017 (has links)
The Rävliden North deposit (Rävliden N) is a volcanogenic massive sulphide (VMS) deposit in the western part of the Skellefte district, northern Sweden. The district is one of Sweden’s major metallogenic provinces with a significant amount of VMS deposits. The Rävliden N deposit, discovered in 2011, contains copper, zinc, lead, silver and subordinate gold and occurs close to the largest VMS deposit in the district, the Kristineberg deposit, which has been mined for more than 70 years. The purpose of this master thesis is to study the composition, mineralogy and paragenetic relationships in different types of sulphide mineralization from the Rävliden N deposit. Emphasis is placed on characterizing the distribution and paragenetic relationships of silver-bearing minerals. The methods include core logging, sampling and mineralogical studies through light optical microscopy (LOM), scanning electron microscopy (SEM) and quantitative evaluation of mineralogy by scanning electron microscopy (QEMSCAN). Lastly, electron microprobe analysis (EMPA) was used to determine the chemical composition of silver-bearing minerals and sulphides. Mineralization types studied include 1: the main massive to semi-massive sulphide mineralization, 2: stratigraphically underlying stringer mineralization and 3: local, vein- and/or fault-hosted silver-rich mineralization in the stratigraphic hanging wall. The massive to semi-massive sulphide mineralization is dominated by sphalerite with lesser galena and pyrrhotite. In contrast, the stringer mineralization is dominated by chalcopyrite and pyrrhotite. The major minerals show evidence of a coeval formation and textural as well as structural evidence suggest that ductile deformation has affected the mineralization types. Notable evidence includes ball-ore textures, accumulation of minerals in pressure shadows and brittle fracturing of competent arsenopyrite and pyrite porphyroblasts and infilling by more incompetent sulphide minerals. The silver-bearing minerals identified are commonly spatially associated with galena and the major species is freibergite ((Ag,Cu,Fe)12(Sb,As)4S13), which also occur as inclusions in chalcopyrite mainly in the stringer mineralization. The stringer mineralization also contains notable amounts of hessite (Ag2Te). Notably, galena, pyrrhotite, freibergite and other sulphosalt minerals are commonly accumulated in pressure shadows near host rock fragments in the massive to semi-massive sulphide mineralization. The only gold-bearing mineral identified in this study is electrum (Au, Ag) in the stringer mineralization. The hanging wall mineralization locally comprises faulted and/or sheared massive sulphide mineralization which is compositionally similar to the main massive to semi-massive sulphide mineralization, besides a significantly higher content of freibergite. However, parts of the hanging wall mineralization are entirely dominated by sulphides and sulphosalts of silver, such as pyrargyrite (Ag3SbS3), pyrostilpnite (Ag3SbS3), argentopyrite (AgFe2S4), sternbergite (AgFe2S3) and stephanite (Ag5SbS4). These occur in structurally late settings, which along with consideration of their temperature stabilities suggest a late origin. Since the silver-bearing minerals in the massive to semi-massive sulphide mineralization and the two varieties of hanging wall mineralization contains the same metals, the mineralization in the hanging wall may have formed by late-stage remobilization of ore components from the underlying Rävliden N deposit. This negates the need for multiple mineralization events to explain the local silver-enriched zones in the hanging wall. The paragenetically late mineralization types contains high content of Ag-bearing minerals in relation to base metal sulphides. This suggests that remobilisation processes were important for locally upgrading the Ag-content.
7

Volcanism in Modern Back-arc Regimes and Their Implications for Ancient Greenstone Belts

Fassbender, Marc Lorin 21 June 2023 (has links)
Greenstone belts are dominated by volcanic rocks with lithogeochemical characteristics that reflect a range of possible geodynamic settings. Many analogies with modern tectonic settings have been suggested. Increasing exploration and comprehensive sampling of volcanic rocks in modern oceans provides the unique opportunity to characterize different melt sources from intraoceanic settings. This thesis examines geochemical data from more than 2850 submarine mafic and more than 2200 submarine felsic volcanic rocks, representing a wide range of settings. The results show significant geochemical variability spanning the full range of compositions of volcanic rocks found in ancient greenstone belts. This diversity reflects complex rift and spreading regimes, variations in crustal thickness, dry melting versus wet melting, mantle mixing and crustal contamination. Highly variable melting conditions are thought to be related to mantle heterogeneities, complex mantle flow regimes and short-lived tectonic domains, such as those caused by diffuse spreading, multiple overlapping spreading centers and microplate breakouts. Systematic differences in the volcanic rocks are revealed by a combination of principal components analysis and unsupervised hierarchical clustering. Rocks from most arc-backarc systems have strongly depleted mantle signatures and well-known subduction-related chemistry. This contrasts with rocks in Archean greenstone belts, which show no, or at least weaker, subduction-related chemistry and stronger mantle enrichment resulting from a less-depleted mantle, less wet-melting, and variable crustal contamination. The geochemistry of the modern volcanic rocks reflects lower mantle temperatures, thinner crust and subduction-related processes of present-day settings. However, rocks that are geochemically identical to those in Archean greenstone belts occur in many modern back-arc basins, such as the Lau Basin. Crustal growth and area-age relationships in the Lau Basin are similar to observed ages and compositions of volcanic assemblages in greenstone belts, such as the Blake River Group of the Abitibi Greenstone Belt. Such settings are recognized as favorable locations for volcanogenic massive sulfide (VMS) deposits, and therefore the particular geochemical signatures of the volcanic rocks are important for enhanced area selection in base and precious metal exploration.
8

The genesis of ‘giant’ copper-zinc-gold-silver volcanogenic massive sulphide deposits at Tambogrande, Perú : age, tectonic setting, paleomorphology, lithogeochemistry, and radiogenic isotopes

Winter, Lawrence Stephen 11 1900 (has links)
The ‘giant’ Tambogrande volcanogenic massive sulphide (VMS) deposits within the Cretaceous Lancones basin of northwestern Perú are some of the largest Cu-Zn-Au-Ag-bearing massive sulphide deposits known. Limited research has been done on these deposits, hence the ore forming setting in which they developed and the key criteria that permitted such anomalous accumulation of base-metal sulphides are not understood. Based on field relationships in the host volcanic rocks and U-Pb geochronology, the deposits formed during the early stages of arc development in the latest Early Cretaceous and were related to an extensional and arc-rift phase (~105-100 Ma, phase 1). During this time, bimodal, primitive basalt-dominant volcanic rocks were erupted in a relatively deep marginal basin. Phase 1 rhyolite is tholeiitic, M-type, and considered to have formed from relatively high temperature, small batch magmas. The high heat flow and extensional setting extant during the initial stages of arc development were essential components for forming a VMS hydrothermal system. The subsequent phase 2 (~99-91 Ma) volcanic sequence comprises more evolved mafic rocks and similar, but more depleted, felsic rocks erupted in a relatively shallow marine setting. Phase 2 is interpreted to represent late-stage arc volcanism during a waning extensional regime and marked the transition to contractional tectonism. The Tambogrande deposits are particularly unusual amongst the ‘giant’ class of VMS deposits in that deposition largely occurred as seafloor mound-type and not by replacement of existing strata. Paleomorphology of the local depositional setting was defined by seafloor depressions controlled by syn-volcanic faults and rhyolitic volcanism. The depressions were the main controls on distribution and geometry of the deposits and, due to inherently confined hydrothermal venting, enhanced the efficiency of sulphide deposition. Geochemical and radiogenic isotope data indicate that the rhyolites in the VMS deposits were high temperature partial melts of the juvenile arc crust that had inherited the isotopic signatures of continental crust. Moreover, Pb isotope data suggest the metal budget was sourced almost wholly from mafic volcanic strata. Therefore, unlike the implications of many conventional models, the felsic volcanic rocks at Tambogrande are interpreted to have only played a passive role in VMS formation.
9

The genesis of ‘giant’ copper-zinc-gold-silver volcanogenic massive sulphide deposits at Tambogrande, Perú : age, tectonic setting, paleomorphology, lithogeochemistry, and radiogenic isotopes

Winter, Lawrence Stephen 11 1900 (has links)
The ‘giant’ Tambogrande volcanogenic massive sulphide (VMS) deposits within the Cretaceous Lancones basin of northwestern Perú are some of the largest Cu-Zn-Au-Ag-bearing massive sulphide deposits known. Limited research has been done on these deposits, hence the ore forming setting in which they developed and the key criteria that permitted such anomalous accumulation of base-metal sulphides are not understood. Based on field relationships in the host volcanic rocks and U-Pb geochronology, the deposits formed during the early stages of arc development in the latest Early Cretaceous and were related to an extensional and arc-rift phase (~105-100 Ma, phase 1). During this time, bimodal, primitive basalt-dominant volcanic rocks were erupted in a relatively deep marginal basin. Phase 1 rhyolite is tholeiitic, M-type, and considered to have formed from relatively high temperature, small batch magmas. The high heat flow and extensional setting extant during the initial stages of arc development were essential components for forming a VMS hydrothermal system. The subsequent phase 2 (~99-91 Ma) volcanic sequence comprises more evolved mafic rocks and similar, but more depleted, felsic rocks erupted in a relatively shallow marine setting. Phase 2 is interpreted to represent late-stage arc volcanism during a waning extensional regime and marked the transition to contractional tectonism. The Tambogrande deposits are particularly unusual amongst the ‘giant’ class of VMS deposits in that deposition largely occurred as seafloor mound-type and not by replacement of existing strata. Paleomorphology of the local depositional setting was defined by seafloor depressions controlled by syn-volcanic faults and rhyolitic volcanism. The depressions were the main controls on distribution and geometry of the deposits and, due to inherently confined hydrothermal venting, enhanced the efficiency of sulphide deposition. Geochemical and radiogenic isotope data indicate that the rhyolites in the VMS deposits were high temperature partial melts of the juvenile arc crust that had inherited the isotopic signatures of continental crust. Moreover, Pb isotope data suggest the metal budget was sourced almost wholly from mafic volcanic strata. Therefore, unlike the implications of many conventional models, the felsic volcanic rocks at Tambogrande are interpreted to have only played a passive role in VMS formation.
10

The genesis of ‘giant’ copper-zinc-gold-silver volcanogenic massive sulphide deposits at Tambogrande, Perú : age, tectonic setting, paleomorphology, lithogeochemistry, and radiogenic isotopes

Winter, Lawrence Stephen 11 1900 (has links)
The ‘giant’ Tambogrande volcanogenic massive sulphide (VMS) deposits within the Cretaceous Lancones basin of northwestern Perú are some of the largest Cu-Zn-Au-Ag-bearing massive sulphide deposits known. Limited research has been done on these deposits, hence the ore forming setting in which they developed and the key criteria that permitted such anomalous accumulation of base-metal sulphides are not understood. Based on field relationships in the host volcanic rocks and U-Pb geochronology, the deposits formed during the early stages of arc development in the latest Early Cretaceous and were related to an extensional and arc-rift phase (~105-100 Ma, phase 1). During this time, bimodal, primitive basalt-dominant volcanic rocks were erupted in a relatively deep marginal basin. Phase 1 rhyolite is tholeiitic, M-type, and considered to have formed from relatively high temperature, small batch magmas. The high heat flow and extensional setting extant during the initial stages of arc development were essential components for forming a VMS hydrothermal system. The subsequent phase 2 (~99-91 Ma) volcanic sequence comprises more evolved mafic rocks and similar, but more depleted, felsic rocks erupted in a relatively shallow marine setting. Phase 2 is interpreted to represent late-stage arc volcanism during a waning extensional regime and marked the transition to contractional tectonism. The Tambogrande deposits are particularly unusual amongst the ‘giant’ class of VMS deposits in that deposition largely occurred as seafloor mound-type and not by replacement of existing strata. Paleomorphology of the local depositional setting was defined by seafloor depressions controlled by syn-volcanic faults and rhyolitic volcanism. The depressions were the main controls on distribution and geometry of the deposits and, due to inherently confined hydrothermal venting, enhanced the efficiency of sulphide deposition. Geochemical and radiogenic isotope data indicate that the rhyolites in the VMS deposits were high temperature partial melts of the juvenile arc crust that had inherited the isotopic signatures of continental crust. Moreover, Pb isotope data suggest the metal budget was sourced almost wholly from mafic volcanic strata. Therefore, unlike the implications of many conventional models, the felsic volcanic rocks at Tambogrande are interpreted to have only played a passive role in VMS formation. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Page generated in 0.0417 seconds