• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 50
  • 50
  • 50
  • 15
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Digital simulation of a crushing plant

Hatch, Christopher January 1977 (has links)
To improve upon the understanding and efficiency of the crushing/ i screening process, the Brenda Mines Limited secondary crushing plant was simulated. The plant consists of two stages of crushing, with a single stage of screening employed in closed circuit with the latter crushing stage. Acquisition of plant data was carried out according to full or modified factorial designs intended to cover normal operating ranges. The units sampled include a Symons Nordberg 7 - foot standard cone crusher, a Symons Nordberg 7 - foot short-head cone crusher and two Allis-Chalmers 8ft.x20ft. double deck virbrating screens. Sampling was carried out under conditions as close to steady state as was possible. All samples were screened at the plant using a standarized procedure. Raw data obtained around the screens was later adjusted by means of a least squares technique that assumes all measured values are in error. The models developed to describe both crushing operations are modifications of those used at Mt. Isa Mines Limited. The model parameters were empirically fitted to the observed data. Both models gave satisfactory performance. The model proposed for the vibrating screens was derived from small particle statistics. It is continuous over all size ranges and was judged to perform satisfactorily. Models for the short-head crushers and the screens can be extrapolated approximately twenty percent beyond their fitted data ranges. The fitted models were combined to enable a steady-state simulation of the complete secondary crushing plant. A study of the simulation was performed in accordance with a full factorial design modified to include intermediate ranges. Operating variables whose values were generated during the simulation remained within their fitted ranges, with the exception of the short-head crusher feedrate. Preliminary analysis of the simulation output shows that the results conform to expected and observed plant behavior. Further analysis with respect to short-head crusher power draw indicates that it may be possible to increase plant capacity under some conditions. The economic advantage of a digital simulation is demonstrated by the fact that the average cost for one computer run is approximately twenty cents. / Applied Science, Faculty of / Mining Engineering, Keevil Institute of / Graduate
2

Localized-denisty-matrix method and its application to nano-size systems

梁万珍, Liang, Wanzhen. January 2001 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
3

Nonlinear deflections of a pin-ended, slender beam column of arbitrary stiffness

Calderwood, Michael Duane, 1952- January 2011 (has links)
Vita. / Digitized by Kansas Correctional Industries
4

Mathematical modelling of the regrinding of hematite

Redstone, John M. January 1982 (has links)
No description available.
5

Mathematical modelling of the regrinding of hematite

Redstone, John M. January 1982 (has links)
No description available.
6

Radiation characteristics of rigid foam insulation

Stern, Curtis Harold January 1982 (has links)
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / Includes bibliographical references. / by Curtis Harold Stern. / B.S.
7

The effect of void distribution on the Hugoniot state of porous media

Creel, Emory Myron Willett 06 December 1995 (has links)
Shocked porous granular material experiences pressure dependent compaction. D. John Pastine introduced a model in which the degree of compaction is dependent on the pressure induced by the shock wave, the shear strength of the material, and the distribution of void sizes. In the past, the model could only be approximated. Using computational techniques and higher speed computers, the response of this model to void size distributions may be displayed to a high degree of precision. / Graduation date: 1996
8

The significance and measurement of the Tsai-Wu normal interaction parameter F₁₂

Hansen, William Christian 29 October 1992 (has links)
Graduation date: 1993
9

Fabric evolution of two-dimensional idealized particle assemblage during shear

Luo, Sai, 罗赛 January 2012 (has links)
Microstructure or fabric definitely affects macroscopic mechanical behavior of granular material. It is also well-observed that fabric evolves with shearing or plastic deformation. In this study, a series of two-dimensional numerical direct shear tests are carried out with the discrete element method, to study the initial fabric effect on global material responses and their micro-macroscopic relations. Idealized particle assemblages are made up of mono-size elongated particles and are prepared by a “deposition” method. Elongated particle is modeled by the built-in clump logic, in which constitutive balls are joined together without further breakage. In the deposition method, there are three controlling parameters, including, deposited direction, inter-particle friction coefficient and particle number, to prepare specimens with similar initial density but different initial packing or fabric. Three types of fabric of particle assemblages are examined quantitatively and are monitored during shearing, including, particle orientations (PO), contact normal forces (NF), and void spaces (VS). These fabric distributions are described by two parameters―anisotropic degree ( ) and orientation angle ( ), with clear physical implications. An additional parameter ( ) describing the average size of voids, is used to quantify void perimeter. It is found that this parameter has a relation with the assemblage’s volumetric response. C With the systematic and meticulous quantification method, the linkage between the macroscopic and microscopic responses of particle assemblages is discussed quantitatively. The results show that the initial packing affects the shear zone thickness, initial stiffness, peak strength, and dilation rate. In the shear zone, particle orientations do not exhibit a unique state at the final stage of direct shearing. At that state, strong normal forces and strong voids are parallel to the major principal stress direction. It seems that the initial packing does not affect their final distributions. At the end of reverse shearing, strong voids and strong normal forces in the shear zone give an essentially unique state, and their preferential directions are related to the changed loading direction. However, apparent stable particle orientations are still affected by the initial fabric. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
10

Unconditional and conditional simulation of flow and transport in heterogeneous, variably saturated porous media

Harter, Thomas. January 1994 (has links)
Spatial heterogeneity of geologic media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analyticalnumerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. With the Monte Carlo analysis accurate estimates of the ensemble conductivity, head, velocity, and concentration mean and covariance are obtained; the statistical moments describing displacement of solute plumes, solute breakthrough at a compliance surface, and time of first exceedance of a given solute flux level are analyzed; and the cumulative probability density functions for solute flux across a compliance surface are investigated. The results of the Monte Carlo analysis show that for very heterogeneous flow fields, and particularly in anisotropie soils, The linearized, analytical predictions of soil water tension and soil moisture flux become erroneous. Analytical, linearized Lagrangian transport models also overestimate both the longitudinal and the transverse spreading of the mean solute plume in very heterogeneous soils and in dry soils. A combined analytical-numerical conditional simulation algorithm is developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions. In soils with large spatial variability and in dry soils, soil water tension measurements significantly reduce the uncertainty in the predicted solute concentration. Saturated hydraulic conductivity data are valuable in relatively wet soils. A combination of tension and saturated hydraulic conductivity data gives the best results, especially if some data are available on the unsaturated hydraulic conductivity function. It is also found that if soil heterogeneity is large, the conditional spatial moments of inertia of the mean concentration plume and the conditional mean breakthrough curves are poor means of depicting the actual solute plume distribution and the actual solute flux. Nevertheless, conditional simulation is one of the most rational approaches for modeling unsaturated flow and transport, if in-situ data are available.

Page generated in 0.1268 seconds