Spelling suggestions: "subject:"maximal actionfunction"" "subject:"maximal functionaction""
1 |
On estimates of constants for maximal functionsIakovlev, Alexander January 2014 (has links)
In this work we will study Hardy-Littlewood maximal function and maximal operator, basing on both classical and most up to date works. In the first chapter we will give definitions for different types of those objects and consider some of their most important properties. The second chapter is entirely devoted to an overview of the fundamental properties of Hardy-Littlewood maximal function, which are strong (p, p) and weak (1, 1) inequalities. Here we list the most actual results on this inequalities in correspondence to the way the maximal func-tion is defined. The third chapter presents the theorem on asymptotic behavior of the lower bound of the constant in the weak-type (1, 1) inequality for the maximal function associated with cubes of Rd, then the dimension d tends to infinity. In the last chapter a method forcomputing constant c, appearing in the main theorem of chapter 3, is given. / <p>QC 20140527</p>
|
2 |
Lebesgue points, Hölder continuity and Sobolev functionsKarlsson, John January 2009 (has links)
<p>This paper deals with Lebesgue points and studies properties of the set of Lebesgue points for various classes of functions. We consider continuous functions, L<sup>1</sup> functions and Sobolev functions. In the case of uniformly continuous functions and Hölder continuous functions we develop a characterization in terms of Lebesgue points. For Sobolev functions we study the dimension of the set of non-Lebesgue points.</p>
|
3 |
Lebesgue points, Hölder continuity and Sobolev functionsKarlsson, John January 2009 (has links)
This paper deals with Lebesgue points and studies properties of the set of Lebesgue points for various classes of functions. We consider continuous functions, L1 functions and Sobolev functions. In the case of uniformly continuous functions and Hölder continuous functions we develop a characterization in terms of Lebesgue points. For Sobolev functions we study the dimension of the set of non-Lebesgue points.
|
4 |
Operator valued Hardy spaces and related subjectsMei, Tao 30 October 2006 (has links)
We give a systematic study of the Hardy spaces of functions with values in
the non-commutative Lp-spaces associated with a semifinite von Neumann algebra
M. This is motivated by matrix valued harmonic analysis (operator weighted norm
inequalities, operator Hilbert transform), as well as by the recent development of
non-commutative martingale inequalities. Our non-commutative Hardy spaces are
defined by non-commutative Lusin integral functions. It is proved in this dissertation
that they are equivalent to those defined by the non-commutative Littlewood-Paley
G-functions.
We also study the Lp boundedness of operator valued dyadic paraproducts and
prove that their Lq boundedness implies their Lp boundedness for all 1 < q < p < âÂÂ.
|
5 |
The Bilinear Hilbert Transform and Sub-bilinear Maximal Function Along CurvesYessica Gaitan (12469794) 28 April 2022 (has links)
<p>Multi-linear operators play an important role in analysis due to their multiple connections with and applications to other mathematical areas such as ergodic theory, elliptic regularity, and other problems in partial differential equations.</p>
<p>Within the area of multi-linear operators, powerful methods were developed originating from the problem of the almost everywhere convergence of Fourier series. Indeed, in their work, Carleson and Fefferman lay the foundation of time-frequency analysis. By further refining their methods, M. Lacey and C. Thiele proved the boundedness of the classical bilinear Hilbert transform for a suitable range of Hölder indices.</p>
<p>In this thesis, we consider the general boundedness properties of the bilinear Hilbert transform and the sub-bilinear maximal function along a suitable family of curves.</p>
<p>In the first part of our work, we present a short proof of the maximal boundedness range for the sub-bilinear maximal function along non-flat curves, giving a unified treatment of both the singular and the maximal operators.</p>
<p>In the second part, we discuss the boundedness of these operators along hybrid curves. This work aims to present a unified perspective that treats the case obtained by joining the zero-curvature features of the operators along flat curves with the non-zero curvature features along non-flat curves.</p>
|
Page generated in 0.0741 seconds