• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 112
  • 112
  • 112
  • 77
  • 77
  • 38
  • 36
  • 32
  • 29
  • 25
  • 24
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Contribution to Research on Underwater Sensor Networks Architectures by Means of Simulation

Climent Bayarri, José Salvador 04 February 2014 (has links)
El concepto de entorno inteligente concibe un mundo donde los diferentes tipos de dispositivos inteligentes colaboran para conseguir un objetivo común. En este concepto, inteligencia hace referencia a la habilidad de adquirir conocimiento y aplicarlo de forma autónoma para conseguir el objetivo común, mientras que entorno hace referencia al mundo físico que nos rodea. Por tanto, un entorno inteligente se puede definir como aquel que adquiere conocimiento de su entorno y aplicándolo permite mejorar la experiencia de sus habitantes. La computación ubicua o generalizada permitirá que este concepto de entorno inteligente se haga realidad. Normalmente, el término de computación ubicua hace referencia al uso de dispositivos distribuidos por el mundo físico, pequeños y de bajo precio, que pueden comunicarse entre ellos y resolver un problema de forma colaborativa. Cuando esta comunicación se lleva a cabo de forma inalámbrica, estos dispositivos forman una red de sensores inalámbrica o en inglés, Wireless Sensor Network (WSN). Estas redes están atrayendo cada vez más atención debido al amplio espectro de aplicaciones que tienen, des de soluciones para el ámbito militar hasta aplicaciones para el gran consumo. Esta tesis se centra en las redes de sensores inalámbricas y subacuáticas o en inglés, Underwater Wireless Sensor Networks (UWSN). Estas redes, a pesar de compartir los mismos principios que las WSN, tienen un medio de transmisión diferente que cambia su forma de comunicación de ondas de radio a ondas acústicas. Este cambio hace que ambas redes sean diferentes en muchos aspectos como el retardo de propagación, el ancho de banda disponible, el consumo de energía, etc. De hecho, las señales acústicas tienen una velocidad de propagación cinco órdenes de magnitud menor que las señales de radio. Por tanto, muchos algoritmos y protocolos necesitan adaptarse o incluso rediseñarse. Como el despliegue de este tipo de redes puede ser bastante complicado y caro, se debe planificar de forma precisa el hardware y los algoritmos que se necesitan. Con esta finalidad, las simulaciones pueden resultar una forma muy conveniente de probar todas las variables necesarias antes del despliegue de la aplicación. A pesar de eso, un nivel de precisión adecuado que permita extraer resultados y conclusiones confiables, solamente se puede conseguir utilizando modelos precisos y parámetros reales. Esta tesis propone un ecosistema para UWSN basado en herramientas libres y de código abierto. Este ecosistema se compone de un modelo de recolección de energía y unmodelo de unmódemde bajo coste y bajo consumo con un sistema de activación remota que, junto con otros modelos ya implementados en las herramientas, permite la realización de simulaciones precisas con datos ambientales del tiempo y de las condiciones marinas del lugar donde la aplicación objeto de estudio va a desplegarse. Seguidamente, este ecosistema se utiliza con éxito en el estudio y evaluación de diferentes protocolos de transmisión aplicados a una aplicación real de monitorización de una piscifactoría en la costa del mar Mediterráneo, que es parte de un proyecto de investigación español (CICYT CTM2011-2961-C02-01). Finalmente, utilizando el modelo de recolección de energía, esta plataforma de simulación se utiliza para medir los requisitos de energía de la aplicación y extraer las necesidades de hardware mínimas. / Climent Bayarri, JS. (2014). Contribution to Research on Underwater Sensor Networks Architectures by Means of Simulation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35328 / TESIS
42

Energy-efficient MAC protocol for wireless sensor networks

Tonsing, Christoph Erik 04 September 2008 (has links)
A Wireless Sensor Network (WSN) is a collection of tiny devices called sensor nodes which are deployed in an area to be monitored. Each node has one or more sensors with which they can measure the characteristics of their surroundings. In a typical WSN, the data gathered by each node is sent wirelessly through the network from one node to the next towards a central base station. Each node typically has a very limited energy supply. Therefore, in order for WSNs to have acceptable lifetimes, energy efficiency is a design goal that is of utmost importance and must be kept in mind at all levels of a WSN system. The main consumer of energy on a node is the wireless transceiver and therefore, the communications that occur between nodes should be carefully controlled so as not to waste energy. The Medium Access Control (MAC) protocol is directly in charge of managing the transceiver of a node. It determines when the transceiver is on/off and synchronizes the data exchanges among neighbouring nodes so as to prevent collisions etc., enabling useful communications to occur. The MAC protocol thus has a big impact on the overall energy efficiency of a node. Many WSN MAC protocols have been proposed in the literature but it was found that most were not optimized for the group of WSNs displaying very low volumes of traffic in the network. In low traffic WSNs, a major problem faced in the communications process is clock drift, which causes nodes to become unsynchronized. The MAC protocol must overcome this and other problems while expending as little energy as possible. Many useful WSN applications show low traffic characteristics and thus a new MAC protocol was developed which is aimed at this category of WSNs. The new protocol, Dynamic Preamble Sampling MAC (DPS-MAC) builds on the family of preamble sampling protocols which were found to be most suitable for low traffic WSNs. In contrast to the most energy efficient existing preamble sampling protocols, DPS-MAC does not cater for the worst case clock drift that can occur between two nodes. Rather, it dynamically learns the actual clock drift experienced between any two nodes and then adjusts its operation accordingly. By simulation it was shown that DPS-MAC requires less protocol overhead during the communication process and thus performs more energy efficiently than its predecessors under various network operating conditions. Furthermore, DPS-MAC is less prone to become overloaded or unstable in conditions of high traffic load and high contention levels respectively. These improvements cause the use of DPS-MAC to lead to longer node and network lifetimes, thus making low traffic WSNs more feasible. / Dissertation (MEng)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
43

Medium Access Control in Impulse-Based Ultra Wideband Ad Hoc and Sensor Networks

August, Nathaniel J. 17 August 2005 (has links)
This thesis investigates distributed medium access control (MAC) protocols custom tailored to both impulse-based ultra wideband (I-UWB) radios and to large ad hoc and sensor networks. I-UWB is an attractive radio technology for large ad hoc and sensor networks due to its robustness to multipath fading effects, sub-centimeter ranging ability, and low-cost, low-power hardware. Current medium access control (MAC) protocols for I-UWB target small wireless personal area networks (WPANs) and cellular networks, but they are not suitable for large, multihop ad hoc and sensor networks. Therefore, this paper proposes a new type of MAC protocol that enables ad hoc and sensor networks to realize the benefits of I-UWB radios. First, we propose a method to overcome the challenges of quickly, reliably, and efficiently sensing medium activity in an ultra wideband network. This provides a base MAC protocol similar to carrier sense multiple access (CSMA) in narrowband systems. Next, we propose to exploit the unique signaling of I-UWB to improve performance over the base MAC protocol without the associated overhead of similar improvements in narrowband systems. I-UWB enables a distributed multichannel MAC protocol, which improves throughput. I-UWB also facilitates a busy signal MAC protocol, which reduces wasted energy from corrupt packets. Finally, because the I-UWB Physical Layer and MAC Layer affect the network and application layers, we propose a cross-layer adaptive system that optimizes performance. Physical Layer simulations show that both the base protocol and the improvements are practical for an I-UWB radio. Networks level simulations characterize the performance of the proposed MAC protocols and compare them to existing MAC protocols. / Ph. D.
44

MAC and Physical Layer Design for Ultra-Wideband Communications

Kumar, Nishant 25 May 2004 (has links)
Ultra-Wideband has recently gained great interest for high-speed short-range communications (e.g. home networking applications) as well as low-speed long-range communications (e.g. sensor network applications). Two flavors of UWB have recently emerged as strong contenders for the technology. One is based on Impulse Radio techniques extended to direct sequence spread spectrum. The other technique is based on Orthogonal Frequency Division Multiplexing. Both schemes are analyzed in this thesis and modifications are proposed to increase the performance of each system. For both schemes, the issue of simultaneously operating users has been investigated. Current MAC design for UWB has relied heavily on existing MAC architectures in order to maintain backward compatibility. It remains to be seen if the existing MACs adequately support the UWB PHY (Physical) layer for the applications envisioned for UWB. Thus, in this work we propose a new MAC scheme for an Impulse Radio based UWB PHY, which is based on a CDMA approach using a code-broker in a piconet architecture. The performance of the proposed scheme is compared with the traditional CSMA scheme as well as the receiver-based code assignment scheme. A new scheme is proposed to increase the overall performance of the Multiband-OFDM system. Two schemes proposed to increase the performance of the system in the presence of simultaneously operating piconets (namely Half Pulse Repetition Frequency and Time spreading) are studied. The advantages/disadvantages of both of the schemes are discussed. / Master of Science
45

MULTI-CHANNEL MEDIUM ACCESS PROTOCOLS FOR WIRELESS NETWORKS

CHOWDHURY, KAUSHIK ROY 20 July 2006 (has links)
No description available.
46

MULTICHANNEL CSMA PROTOCOLS FOR AD HOC NETWORKS

JAIN, NITIN 11 October 2001 (has links)
No description available.
47

Design and analysis of energy-efficient media access control protocols in wireless sensor networks. Design and analysis of MAC layer protocols using low duty cycle technique to improve energy efficient and enhance communication performance in wireless sensor networks.

Ammar, Ibrahim A.M. January 2014 (has links)
Wireless sensor network (WSN) technology has gained significant importance due to its potential support for a wide range of applications. Most of the WSN applications consist of a large numbers of distributed nodes that work together to achieve common objects. Running a large number of nodes requires an efficient mechanism to bring them all together in order to form a multi-hop wireless network that can accomplish some specific tasks. Even with recent developments made in WSN technology, numbers of important challenges still stand as vulnerabilities for WSNs, including energy waste sources, synchronisation leaks, low network capacity and self-configuration difficulties. However, energy efficiency remains the priority challenging problem due to the scarce energy resources available in sensor nodes. These concerns are managed by medium access control (MAC) layer protocols. MAC protocols designed specifically for WSN have an additional responsibility of managing radio activity to conserve energy in addition to the traditional functions. This thesis presents advanced research work carried out in the context of saving energy whilst achieving the desired network performance. Firstly the thesis contributes by proposing Overlapped Schedules for MAC layer, in which the schedules of the neighbour clusters are overlapped by introducing a small shift time between them, aiming to compensate the synchronisation errors. Secondly, this thesis proposed a modified architecture derived from S-MAC protocol which significantly supports higher traffic levels whilst achieving better energy efficiency. This is achieved by applying a parallel transmission concept on the communicating nodes. As a result, the overall efficiency of the channel contention mechanism increases and leads to higher throughput with lower energy consumption. Finally, this thesis proposed the use of the Adaptive scheme on Border Nodes to increase the power efficiency of the system under light traffic load conditions. The scheme focuses on saving energy by forcing the network border nodes to go off when not needed. These three contributions minimise the contention window period whilst maximising the capacity of the available channel, which as a result increase network performance in terms of energy efficiency, throughput and latency. The proposed system is shown to be backwards compatible and able to satisfy both traditional and advanced applications. The new MAC protocol has been implemented and evaluated using NS-2 simulator, under different traffic loads and varying duty cycle values. Results have shown that the proposed solutions are able to significantly enhance the performance of WSNs by improving the energy efficiency, increasing the system throughput and reducing the communication delay.
48

Analysis of the MAC protocol in low rate wireless personal area networks with bursty ON-OFF traffic

Gao, J.L., Hu, J., Min, Geyong, Xu, L. January 2013 (has links)
No / Supported by the IEEE 802.15.4 standard, embedded sensor networks have become popular and been widely deployed in recent years. The IEEE 802.15.4 medium access control (MAC) protocol is uniquely designed to meet the desirable requirements of the low end-to-end delay, low packet loss, and low power consumption in the low rate wireless personal areas networks (LR-WPANs). This paper develops an analytical model to quantify the key performance metrics of the MAC protocol in LR-WPANs with bursty ONOFF traffic. This study fills the gap in the literature by removing the assumptions of saturated traffic or nonbursty unsaturated traffic conditions, which are unable to capture the characteristics of bursty multimedia traffic in sensor networks. This analytical model can be used to derive the QoS performance metrics in terms of throughput and total delay. The accuracy of the model is verified through NS-2 (http://www.isi.edu/nsnam/ns/) simulation experiments. This model is adopted to investigate the performance of the MAC protocol in LR-WPANs under various traffic patterns, different loads, and various numbers of stations. Numerical results show that the traffic patterns and traffic burstiness have a significant impact on the delay performance of LR-WPANs.
49

Protocoles de routage sans connaissance de voisinage pour réseaux radio multi-sauts / Beacon-less geographic routing for multihop wireless sensor networks

Amadou, Ibrahim 06 September 2012 (has links)
L'efficacité énergétique constitue l'objectif clef pour la conception des protocoles de communication pour des réseaux de capteurs radio multi-sauts. Beaucoup d'efforts ont été réalisés à différents niveaux de la pile protocolaire à travers des algorithmes d'agrégation spatiale et temporelle des données, des protocoles de routage efficaces en énergie, et des couches d'accès au médium avec des mécanismes d'ordonnancement permettant de mettre la radio en état d'endormissement afin d'économiser l'énergie. Pour autant, ces protocoles utilisent de façon importante des paquets de contrôle et de découverte du voisinage qui sont coûteux en énergie. En outre, cela se fait très souvent sans aucune interaction entre les différentes couches de la pile. Ces travaux de thèse s'intéressent donc particulièrement à la problématique de l'énergie des réseaux de capteurs à travers des protocoles de routage et d'accès au médium. Les contributions de cette thèse se résument de la manière suivante : Nous nous sommes tout d'abord intéressés à la problématique de l'énergie au niveau routage. Dans cette partie, les contributions se subdivisent en deux parties. Dans un premier temps, nous avons proposé une analyse théorique de la consommation d'énergie des protocoles de routage des réseaux radio multi-sauts d'appréhender au mieux les avantages et les inconvénients des uns et des autres en présence des modèles de trafic variables, un diamètre du réseau variable également et un modèle radio qui permet de modéliser les erreurs de réception des paquets. À l'issue de cette première étude, nous sommes parvenus à la conclusion que pour être économe en énergie, un protocole de routage doit avoir des approches similaires à celle des protocoles de routage géographique sans message hello. Puis, dans un second temps, nous introduisons une étude de l'influence des stratégies de relayage dans un voisinage à 1 saut sur les métriques de performance comme le taux de livraison, le nombre de messages dupliqués et la consommation d'énergie. Cette étude est suivie par une première proposition de protocole de routage géographique sans message hello (Pizza-Forwarding (PF)) exploitant des zones de relayage optimisées et sans aucune hypothèse sur les propriétés du canal radio. Dans le but de réduire considérablement la consommation de PF, nous proposons de le combiner avec une adaptation d'un protocole MAC asynchrone efficace en énergie à travers une approche transversale. La combinaison de ces deux approches montre un gain significatif en terme d'économie d'énergie avec des très bon taux de livraison et cela quels que soient les scénarios et la nature de la topologique. / Energy-efficient communication protocol is a primary design goal for Wireless Sensor Networks (WSNs). Many efforts have been done to save energy anywhere in the protocol stack through temporal and spatial data aggregation schemes, energy-aware routing protocols, activity scheduling and energy-efficient MAC protocols with duty cycle. However both control packets and beacons remain which induces a huge waste energy. Moreover, their design follows the classical layered approach with the principle of modularity in system development, which can lead to a poor performance in WSNs. This thesis focuses on the issues of energy in WSNs through energy-efficient routing and medium access control protocols. The constributions of this thesis can be summarized as follows: First, we are interested on the energy issues at the routing layer for multihop wireless sensor networks (WSNs). We propose a mathematical framework to model and analyze the energy consumption of routing protocols in multihop WSNs by taking into account the protocol parameters, the traffic pattern and the network characteristics defined by the medium channel properties, the dynamic topology behavior, the network diameter and the node density. In this study, we show that Beacon-less routing protocol should be a best candidate to save energy in WSNs. We investigate the performance of some existing relay selection schemes which are used by Beacon-less routing protocols. Extensive simulations are proposed to evaluate their performance locally in terms of packet delivery ratio, duplicated packet and delay. Then, we extend the work in multihop wiriless networks and develop an optimal solution, Enhanced Nearest Forwarding within Radius, which tries to minimize the per-hop expected number of retranmissions in order to save energy. We present a new beaconless routing protocol called Pizza-Forwarding (PF) without any assumption on the radio environment: neither the radio range nor symmetric radio links nor radio properties (shadowing, etc.) are assumed or restricted. A classical greedy mode is proposed. To overcome the hole problem, packets are forwarded to an optimal node in the two hop neighbor following a reactive and optimized neighborhood discovery. In order to save energy due to idle listening and overhearing, we propose to combine PF's main concepts with an energy-efficient MAC protocol to provide a joint MAC/routing protocol suitable for a real radio environment. Performance results lead to conclude to the powerful behavior of PFMAC.
50

Proposition et vérification formelle de protocoles de communications temps-réel pour les réseaux de capteurs sans fil / Proposition and formal verification of real-time wireless sensor networks protocols

Mouradian, Alexandre 18 November 2013 (has links)
Les RCsF sont des réseaux ad hoc, sans fil, large échelle déployés pour mesurer des paramètres de l'environnement et remonter les informations à un ou plusieurs emplacements (nommés puits). Les éléments qui composent le réseau sont de petits équipements électroniques qui ont de faibles capacités en termes de mémoire et de calcul ; et fonctionnent sur batterie. Ces caractéristiques font que les protocoles développés, dans la littérature scientifique de ces dernières années, visent principalement à auto-organiser le réseau et à réduire la consommation d'énergie. Avec l'apparition d'applications critiques pour les réseaux de capteurs sans fil, de nouveau besoins émergent, comme le respect de bornes temporelles et de fiabilité. En effet, les applications critiques sont des applications dont dépendent des vies humaines ou l'environnement, un mauvais fonctionnement peut donc avoir des conséquences catastrophiques. Nous nous intéressons spécifiquement aux applications de détection d'événements et à la remontée d'alarmes (détection de feu de forêt, d'intrusion, etc), ces applications ont des contraintes temporelles strictes. D'une part, dans la littérature, on trouve peu de protocoles qui permettent d'assurer des délais de bout en bout bornés. Parmi les propositions, on trouve des protocoles qui permettent effectivement de respecter des contraintes temporelles mais qui ne prennent pas en compte les spécificités des RCsF (énergie, large échelle, etc). D'autres propositions prennent en compte ces aspects, mais ne permettent pas de garantir des bornes temporelles. D'autre part, les applications critiques nécessitent un niveau de confiance très élevé, dans ce contexte les tests et simulations ne suffisent pas, il faut être capable de fournir des preuves formelles du respect des spécifications. A notre connaissance cet aspect est très peu étudié pour les RcsF. Nos contributions sont donc de deux types : * Nous proposons un protocole de remontée d'alarmes, en temps borné, X-layer (MAC/routage, nommé RTXP) basé sur un système de coordonnées virtuelles originales permettant de discriminer le 2-voisinage. L'exploitation de ces coordonnées permet d'introduire du déterminisme et de construire un gradient visant à contraindre le nombre maximum de sauts depuis toute source vers le puits. Nous proposons par ailleurs un mécanisme d'agrégation temps-réel des alarmes remontées pour lutter contre les tempêtes de détection qui entraînent congestion et collision, et donc limitent la fiabilité du système. * Nous proposons une méthodologie de vérification formelle basée sur les techniques de Model Checking. Cette méthodologie se déroule en trois points, qui visent à modéliser de manière efficace la nature diffusante des réseaux sans fil, vérifier les RCsF en prenant en compte la non-fiabilité du lien radio et permettre le passage à l'échelle de la vérification en mixant Network Calculus et Model Checking. Nous appliquons ensuite cette méthodologie pour vérifier RTXP. / Wireless Sensor Networks (WSNs) are ad hoc wireless large scale networks deployed in order to monitor physical parameters of the environment and report the measurements to one or more nodes of the network (called sinks). The small electronic devices which compose the network have low computing and memory capacities and run on batteries, researches in this field have thus focused mostly on self-organization and energy consumption reduction aspects. Nevertheless, critical applications for WSNs are emerging and require more than those aspects, they have real-time and reliability requirements. Critical applications are applications on which depend human lives and the environment, a failure of a critical application can thus have dramatic consequences. We are especially interested in anomaly detection applications (forest fire detection, landslide detection, intrusion detection, etc), which require bounded end to end delays and high delivery ratio. Few WSNs protocols of the literature allow to bound end to end delays. Among the proposed solutions, some allow to effectively bound the end to end delays, but do not take into account the characteristics of WSNs (limited energy, large scale, etc). Others, take into account those aspects, but do not give strict guaranties on the end to end delays. Moreover, critical applications require a very high confidence level, simulations and tests are not sufficient in this context, formal proofs of compliance with the specifications of the application have to be provided. The application of formal methods to WSNs is still an open problem. Our contributions are thus twofold : * We propose a real-time cross-layer protocol for WSNs (named RTXP) based on a virtual coordinate system which allows to discriminate nodes in a 2-hop neighborhood. Thanks to these coordinates it is possible to introduce determinism in the accesses to the medium and to bound the hop-count, this allows to bound the end to end delay. Besides, we propose a real-time aggregation scheme to mitigate the alarm storm problem which causes collisions and congestion and thus limit the network lifetime. * We propose a formal verification methodology based on the Model Checking technique. This methodology is composed of three elements, (1) an efficient modeling of the broadcast nature of wireless networks, (2) a verification technique which takes into account the unreliability of the wireless link and (3) a verification technique which mixes Network Calculus and Model Checking in order to be both scalable and exhaustive. We apply this methodology in order to formally verify our proposition, RTXP.

Page generated in 0.0778 seconds