• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 13
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 60
  • 28
  • 17
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A classical and distributed theory of Mellin multiplier transforms

Spratt, W. J. January 1985 (has links)
No description available.
2

Analysis of weighted digital sums by mellin transform /

Cheung, Yun Kuen. January 2009 (has links)
Includes bibliographical references (p. 85-86).
3

Mellin de Saint-Gelais eine litteratur- und sprachgeschichtliche untersuchung ...

Wagner, Ernst Winfrid, January 1893 (has links)
Inaug.-diss.--Heidelberg. / Curriculum vitae.
4

Mellin de Saint-Gelais eine Litteratur-und sprachgeschichtliche Untersuchung ... /

Wagner, Ernst Winfrid, January 1893 (has links)
Thesis--Heidelberg. / Vita. Includes bibliographical references.
5

Mellin de Saint-Gelais : eine Litteratur-und sprachgeschichtliche Untersuchung... /

Wagner, Ernst Winfrid, January 1893 (has links)
Thesis--Heidelberg. / Vita. Bibliographical footnotes.
6

Étude des invariants de rephasage en passant par la transformée de Mellin

Pelletier-Dumont, Jasmine 02 February 2024 (has links)
De la première mention d'une masse pour les neutrinos par B. Pontecorvo en 1957 jusqu'aux récentes expériences sur les neutrinos, la mise en évidence de leur comportement oscillatoire pointe vers la nécessité d'une physique au-delà du modèle standard. Heureusement, l'oscillation des neutrinos n'apporte pas uniquement son lot de problèmes ; ce phénomène, pouvant être expliqué par l'existence d'une masse pour ces particules, mène également à une piste de solution quant à la brisure de la symétrie CP. En considérant des masses aux neutrinos, il devient possible d'expliquer cette brisure de symétrie de la même manière que pour les quarks, c'està-dire par la présence de phases dans les matrices de mélange. Cependant, l'étude de ces phases n'est pas révélatrice de la brisure de la symétrie CP puisque celles-ci dépendent de la paramétrisation utilisée pour la matrice de mélange. De plus, les quantités qui sauraient remplir un tel rôle devraient également être invariantes sous changement de base. C'est pour répondre à ces besoins qu'en 1985, Jarlskog a développé un formalisme plus adéquat basé sur des quantités nommées invariants de rephasage qui sont l'objet principal de ce projet de recherche. Les objectifs sont de calculer et de déterminer les propriétés des distributions de ces invariants dans le cadre du principe anarchique. Ce cadre théorique permet l'étude des entrées de la matrice PMNS sans qu'aucune symétrie ne soit initialement imposée de sorte que celles-ci y apparaissent aléatoires à basse énergie. Il est possible de conclure que la mesure de Haar, qui apparaît naturellement à partir du principe anarchique, est susceptible de reproduire la matrice PMNS à basses énergies. On développe alors un formalisme permettant l'étude des distributions des invariants de rephasage sous la mesure de Haar. De là, on montre que pour un nombre fixe de générations de neutrinos, tous les invariants de rephasage d'un même type possèdent la même distribution sous la mesure de Haar. Puis, on calcule les distributions des invariants de rephasage quadratiques et quartiques sous cette même mesure à partir d'une nouvelle approche passant par la transformée de Mellin. On obtient alors des résultats complètement analytiques dont les implications physiques en fonction du nombre de générations de neutrinos sont finalement discutées. / From the first mention of massive neutrinos by Pontecorvo in 1957 to recent experiments with neutrinos, the demonstration of their oscillatory behavior indicates the need for a physics beyond the standard model. One way to solve neutrinos oscillation is by adding a mass to these particles. Fortunately, this deviation from the physics of the Standard Model is the solution to another problem, CP violation. Assuming massive neutrinos, one can add phases to the mixing matrix and then explain CP violation in the same way as for quarks. Those phases cannot inform about the amplitude of the CP violation since they depend on the chosen parametrization for the PMNS matrix, and they are not invariant under change of basis. That is why in 1985, Jarlskog developed a new formalism based on basis invariant quantity namely the rephasing invariants. This memoir aims to study those phases in the context of the anarchy principle. In this theoretical framework, the elements of the PMNS matrix are studied without any constraints being imposed on them so that they appear random in the low energy limit. It is possible to conclude that the Haar measure, which follows naturally from the anarchy principle, is likely to reproduce the PMNS matrix at low energies. A formalism is therefore developed to study the rephasing invariants under this measure. Moreover, we show that all the rephasing invariants of the same type have the same probability density function under the Haar measure for a fixed number of neutrinos. From these results, the probability density functions for all types of rephasing invariants under the Haar measure are easily obtained for an arbitrary number of neutrinos. Finally, the physical implications of our analytical results in terms of neutrino generation number are discussed.
7

An alternative proof of genericity for unitary group of three variables

Wang, Chongli January 2016 (has links)
In this thesis, we prove that local genericity implies globally genericity for the quasi-split unitary group U3 for a quadratic extension of number fields E/F. We follow [Fli1992] and [GJR2001] closely, using the relative trace formula approach. Our main result is the existence of smooth transfer for the relative trace formulae in [GJR2001], which is circumvented there. The basic idea is to compute the Mellin transform of Shalika germ functions and show that they are equal in the unitary case and the general linear case.
8

A new method of pricing multi-options using Mellin transforms and integral equations

Vasilieva, Olesya January 2009 (has links)
<p>In this thesis a new method for the option pricing will be introduced with the help of the Mellin transforms. Firstly, the Mellin transform techniques for options on a single underlying stock is presented.After that basket options will be considered. Finally, an improvement of existing numerical results applied to Mellin transforms for 1-basket and 2-basket American Put Option will be discussed concisely. Our approach does not require either variable transformations or solving diffusion equations.</p> / thesis
9

A new method of pricing multi-options using Mellin transforms and integral equations

Vasilieva, Olesya January 2009 (has links)
In this thesis a new method for the option pricing will be introduced with the help of the Mellin transforms. Firstly, the Mellin transform techniques for options on a single underlying stock is presented.After that basket options will be considered. Finally, an improvement of existing numerical results applied to Mellin transforms for 1-basket and 2-basket American Put Option will be discussed concisely. Our approach does not require either variable transformations or solving diffusion equations. / thesis
10

A Method to Symbolically Compute Convolution Integrals

Peasgood, Richard January 2009 (has links)
This thesis presents a method for computing symbolic solutions of a certain class of improper integrals related to convolutions of Mellin transforms. Important integrals that fall into this category are integral transforms such as the Fourier, Laplace, and Hankel transforms. The method originated in a presentation by Salvy, However, many of the details of the method were absent. We present the method of Salvy in full which computes a linear homogeneous differentail equation which is satisfied by the integral in question. A theory of contour integrals is introduced that is related to the contour definition of Meijer G functions. This theory is used to prove the correctness of the method of Salvy and also gives a way to compute regions of validity for the solutions computed. We then extend the method to compute symbolic solutions of the integral along with where the solutions are valid.

Page generated in 0.0549 seconds